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Executive Summary 

 

This report details the development of the platform level software for the GLACIATION project 

in the context of WP3's key objectives: 

• Developing secure embedded software (Obj. 3.1) for control, processing, 

acceleration, storage, and networking. 

• Enabling secure edge node connectivity (Obj. 3.2) through research on hardware-

optimized processing and network intelligence. 

• Resource management and service deployment (Obj. 3.3) using machine learning 

for workload placement, distribution, and Deep Reinforcement Learning for dynamic 

edge environments. 

Key functionalities achieved so far in the scope of the work package and in line with the project 

include: 

• Hardware-optimized processing: efficient execution of knowledge graph processes 

on various platforms (CPU, GPU, FPGA). 

• Workload orchestration: initial implementation of dynamic workload prediction and 

placement across edge and cloud resources based on demand prediction and 

constraints. 

• Swarm intelligence: agent-based swarm for scalable and self-organizing 

edge/core/cloud orchestration. 

• Autonomous data management: predicting the data movement based on usage and 

power consumption, with a focus on transparency, understandability, and ethical 

algorithms. 

• Data management framework: Addressing data lifecycle, storage, provenance, 

sovereignty, and vocabularies for the edge environment. 
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1. Introduction 

This document provides the status, selected technologies satisfying the project requirements, 

and the current development status as well as future roadmaps of the components that WP3 

will contribute to the project. 

Chapter 2 presents the result of their research and experiments regarding the hardware-

optimized processing of Distributed Knowledge Graphs (DKGs), which contains a range of 

evaluated DKGs as well as various optimization possibilities. 

Chapter 3 describes the AI/ML-based solution to workload placement, comprised of two main 

components. The first component is the forecasting model, which predicts the future workload 

demand. The second component, i.e. the orchestrator, plans and prepares the resources to 

meet the predicted workload and ultimately provide for the real incoming workload. 

Chapter 4 elaborates on the distributed data search and data management (movement) in the 

dynamic environment of the DKG using a Swarm Intelligence-based Orchestration. 

Chapter 5 is dedicated to the details of the development of a secure data management 

framework specifically tailored to the GLACIATION platform's edge computing focus. The task 

highlights the challenges of managing data in a distributed AI environment and suggests 

solutions.  

Chapter 6 outlines the integration procedures, requirements, and protocols and provides the 

details of a lab test to enable all partners to formally declare their dependencies, announce 

their services, and provide containerized versions of the components. These components will 

go through a quality control process including dependency checking, container deployment, 

and dry runs. 
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2. Hardware optimized processing of distributed 

knowledge graphs 

The emergence of AI-enabled placement engines has revolutionized decision-making 

processes in numerous domains, including logistics, supply chain management, and resource 

allocation. These engines leverage advanced algorithms to analyze vast amounts of data and 

derive optimal placement solutions. One promising approach involves the utilization of DKGs, 

which represent complex relationships among various entities. However, efficient processing 

of these graphs poses significant computational challenges, necessitating innovative hardware 

optimization techniques. 

This section provides an overview of AI-enabled placement engines and the role of DKGs in 

enhancing their functionality. Additionally, it explores existing research on hardware 

optimization for graph processing tasks, highlighting the need for tailored solutions to address 

the unique characteristics of DKGs. 
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2.1 Objectives 
2.1 

1. Challenges in Processing Distributed Knowledge Graphs: 

Processing distributed knowledge graphs involves dealing with immense volumes of 

interconnected data, leading to challenges such as high computational complexity, memory 

requirements, and communication overhead. This section delves into the specific challenges 

encountered when processing Distributed Knowledge Graphs within the context of AI-enabled 

placement engines. 

2. Hardware Optimization Techniques: 

We propose a set of hardware optimization techniques tailored to address the challenges 

associated with processing distributed knowledge graphs. These techniques encompass both 

architectural enhancements and algorithmic optimizations aimed at improving performance, 

scalability, and security. 

2.1. Parallel Processing Architectures: 

Utilizing parallel processing architectures, such as GPUs (Graphics Processing Units) and 

FPGAs (Field-Programmable Gate Arrays), can significantly accelerate graph processing 

tasks by exploiting parallelism at various levels. We explore the suitability of these 

architectures for handling the unique characteristics of DKGs and discuss optimization 

strategies tailored to maximize their efficiency. 

2.2. Memory Hierarchy Optimization: 

Efficient utilization of memory resources is critical for handling large-scale DKGs. We 

investigate techniques for optimizing memory hierarchies to minimize latency and maximize 

bandwidth, thereby improving overall system performance. 

2.3. Network Communication Optimization: 

Communication overhead poses a significant bottleneck in distributed graph processing 

systems. We propose optimizations at both the hardware and software levels to minimize 

communication latency and bandwidth utilization, facilitating seamless interaction among 

distributed components. 

3.  Experimental Evaluation: 

To assess the efficacy of the proposed hardware optimization techniques, we conduct 

comprehensive experimental evaluations using real-world datasets and representative 

placement scenarios. Performance metrics such as processing time, scalability, and resource 

utilization are analyzed to quantify the benefits of hardware optimization in enhancing the 

efficiency of AI-enabled placement engines. 

2.2 Research 

2.2.1 Findings 

Through our investigation into hardware-optimized processing of DKGs for secure AI-enabled 

placement engines, several significant findings have emerged. These findings shed light on 

the efficacy of hardware optimization techniques in addressing the challenges associated with 
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graph processing while enhancing both performance and security aspects. Below are the key 

research findings:  

1. Performance Enhancement: 

Hardware optimization techniques, including parallel processing architectures such as GPUs 

and FPGAs, demonstrate substantial performance improvements in processing DKGs. These 

architectures exploit parallelism inherent in graph algorithms, resulting in accelerated 

computation and reduced processing times. 

Memory hierarchy optimization plays a crucial role in improving performance by minimizing 

latency and maximizing memory bandwidth utilization. Techniques such as cache-aware data 

structures and memory prefetching contribute to more efficient memory access patterns, 

leading to enhanced overall system performance. 

2. Scalability: 

The scalability of AI-enabled placement engines is significantly enhanced through hardware 

optimization. Parallel processing architectures enable seamless scalability by distributing 

computation across multiple processing units, thereby accommodating larger graph sizes 

without sacrificing performance. 

Optimization of network communication further facilitates scalability by minimizing 

communication overhead among distributed components. Efficient data exchange 

mechanisms ensure seamless interaction, enabling the placement engine to scale efficiently 

with increasing workload demands. 

3. Security Enhancement: 

Hardware optimization techniques offer inherent security benefits by leveraging hardware-

based security mechanisms. Features such as hardware-based encryption and secure 

enclaves provide robust protection against security threats, including data breaches and 

unauthorized access. 

By integrating security mechanisms at the hardware level, AI-enabled placement engines can 

mitigate vulnerabilities associated with distributed graph processing, thereby enhancing overall 

system security posture. 

4. Real-world Applications: 

The findings have significant implications for real-world applications where AI-enabled 

placement engines are deployed. Industries such as logistics, supply chain management, and 

resource allocation stand to benefit from improved performance, scalability, and security 

offered by hardware-optimized processing of DKGs. 

The ability to process large-scale knowledge graphs efficiently enables more accurate and 

timely decision-making, resulting in optimized resource utilization, reduced costs, and 

enhanced operational efficiency. 

2.2.2 Technology Selection 

In the pursuit of hardware-optimized processing of DKGs for secure AI-enabled placement 

engines, careful selection of technologies is paramount to achieving desired performance, 

scalability, and security objectives. The following outlines the key technologies identified for 

realizing efficient and resilient placement engines: 
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1. Parallel Processing Architectures: 

Graphics Processing Units (GPUs): GPUs offer massive parallel processing capabilities 

suitable for handling the computational demands of DKG processing. Their highly parallel 

architecture enables concurrent execution of graph algorithms across numerous processing 

cores, leading to significant performance gains. 

Field-Programmable Gate Arrays (FPGAs): FPGAs provide customizable hardware 

acceleration tailored to specific graph processing tasks. Their flexibility allows for the 

implementation of custom graph algorithms directly in hardware, offering unparalleled 

performance and energy efficiency for complex computations. 

2. Memory Hierarchy Optimization: 

Cache-aware Data Structures: Utilizing cache-aware data structures optimizes memory 

access patterns, minimizing cache misses and reducing memory latency. Techniques such as 

graph partitioning and vertex reordering enhance locality of reference, improving overall 

memory hierarchy efficiency. 

Memory Prefetching: Prefetching techniques anticipate memory access patterns and fetch 

data proactively, mitigating memory access latency. Hardware support for prefetching 

mechanisms enhances memory subsystem performance, particularly in scenarios with 

irregular memory access patterns inherent in graph processing. 

3. Network Communication Optimization: 

High-speed Interconnects: Leveraging high-speed interconnect technologies such as 

InfiniBand or Ethernet with Remote Direct Memory Access (RDMA) capabilities minimizes 

communication latency and overhead. RDMA facilitates direct data transfers between nodes 

without CPU intervention, improving communication efficiency in distributed environments. 

Message Passing Libraries (MPI): MPI libraries offer optimized communication primitives for 

efficient data exchange among distributed components. Implementing communication 

protocols tailored to distributed graph processing minimizes synchronization overhead and 

maximizes network throughput. 

4. Hardware-based Security Mechanisms: 

Secure Enclaves: Secure enclaves provide isolated execution environments within the 

hardware, protecting sensitive data and computation from unauthorized access. Utilizing 

secure enclaves ensures confidentiality and integrity of critical operations, enhancing the 

security posture of AI-enabled placement engines. 

Hardware-based Encryption: Hardware-accelerated encryption mechanisms safeguard data in 

transit and at rest, mitigating the risk of data breaches and unauthorized access. Integration of 

hardware-based encryption accelerators ensures robust data protection without compromising 

performance. 

5. Software Ecosystem: 

Graph Processing Frameworks: Leveraging scalable graph processing frameworks such as 

Apache Spark GraphX, Apache Giraph, or GraphLab accelerates development and 

deployment of distributed graph algorithms. These frameworks provide high-level abstractions 

for graph computation tasks, enabling seamless integration with hardware-optimized 

processing architectures. 
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Security Libraries: Integration of security libraries and protocols, such as OpenSSL or Intel 

SGX SDK, enhances the security posture of AI-enabled placement engines. These libraries 

offer standardized interfaces for implementing encryption, authentication, and access control 

mechanisms, ensuring compliance with security requirements. 

6. Evaluation and Benchmarking Tools: 

Graph Analytics Benchmarks: Utilizing benchmark suites such as Graph500 or LDBC 

Graphalytics facilitates performance evaluation and comparison of hardware-optimized graph 

processing systems. These benchmarks assess various aspects of graph processing, 

including traversal performance, scalability, and memory efficiency. 

Performance Profiling Tools: Profiling tools such as NVIDIA Nsight Compute or Intel VTune 

Amplifier enable in-depth analysis of system performance and resource utilization. Profiling 

hardware performance counters and memory access patterns provides insights into potential 

bottlenecks and optimization opportunities. 

2.2.3 Satisfying the GLACIATION Requirements 

The GLACIATION requirements refer to the necessity of ensuring long-term storage and 

accessibility of historical data within AI-enabled placement engines. Meeting these 

requirements entails adopting strategies and technologies to preserve the integrity, availability, 

and usability of data over extended periods. Below are the key considerations for satisfying 

the GLACIATION requirements: 

  

1. Data Archiving Policies: 

Establishing robust data archiving policies is essential for preserving historical data while 

managing storage costs effectively. Define criteria for identifying data eligible for archiving 

based on relevance, retention periods, and compliance regulations. 

Implement automated archiving mechanisms to systematically move inactive or historical data 

to long-term storage repositories, such as tape archives or cloud-based cold storage solutions. 

This ensures efficient utilization of primary storage resources while maintaining accessibility to 

archived data when needed. 

2. Immutable Data Storage: 

Adopting immutable data storage mechanisms safeguards against unauthorized modifications 

or deletions of historical data, preserving its integrity and auditability. Utilize technologies such 

as Write-Once-Read-Many (WORM) storage or blockchain-based ledgers to enforce data 

immutability. 

Implement access controls and encryption mechanisms to secure archived data against 

unauthorized access, ensuring compliance with data privacy regulations and protecting 

sensitive information from unauthorized disclosure. 

3. Data Lifecycle Management: 

Implement comprehensive data lifecycle management strategies to govern the entire lifespan 

of data within the placement engine. Define clear policies for data ingestion, processing, 

retention, archiving, and eventual disposal in alignment with business requirements and 

regulatory mandates. 
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Utilize metadata management frameworks to catalog and index historical data, facilitating 

efficient retrieval and analysis. Metadata enrichment enhances the discoverability and 

contextuality of archived data, enabling users to extract valuable insights for decision-making 

purposes. 

4. Data Retention Compliance: 

Ensure compliance with data retention regulations and industry standards governing the 

preservation of historical data. Stay abreast of evolving regulatory requirements and adjust 

data retention policies accordingly to maintain compliance. 

Implement data anonymization and pseudonymization techniques to protect the privacy of 

individuals whose data is archived within the placement engine. Anonymized data minimizes 

the risk of regulatory non-compliance while preserving the utility of archived datasets for 

analytical purposes. 

2.3 Advancements 

2.3.1 Developments Performed 

In the dynamic landscape of AI-enabled placement engines, a series of significant 

developments have been executed to advance the capabilities and functionalities of these 

systems. These developments encompass a broad spectrum of technological innovations, 

algorithmic enhancements, and strategic initiatives aimed at improving the performance, 

scalability, and security of placement engines. Key developments performed include: 

Algorithmic Refinements: Researchers and practitioners, globally, have undertaken extensive 

efforts to refine and optimize algorithms used within placement engines. These efforts include 

advancements in machine learning techniques, graph analytics algorithms, and optimization 

methods tailored to specific placement scenarios. By fine-tuning algorithms, placement 

engines can achieve higher accuracy, faster processing times, and better adaptability to 

diverse datasets and use cases. 

Infrastructure Scaling: Significant investments have been made to scale the infrastructure 

supporting placement engines, both in terms of computational resources and data storage 

capacity. This scaling encompasses the deployment of high-performance computing clusters, 

cloud computing resources, and distributed storage systems capable of handling large-scale 

datasets and intensive computational workloads. Scalable infrastructure enables placement 

engines to process and analyze vast amounts of data efficiently, facilitating real-time decision-

making and analytics. 

Integration with Emerging Technologies: Developments in AI and related technologies, such 

as Natural Language Processing (NLP), computer vision, and deep learning, have been 

integrated into placement engines to enhance their capabilities. Integration with these 

emerging technologies enables placement engines to leverage unstructured data sources, 

extract valuable insights from multimedia content, and make more informed placement 

decisions based on comprehensive data analysis. 

Performance Optimization: Continuous optimization efforts have been undertaken to improve 

the performance and efficiency of placement engines. This includes optimizing codebase, 

streamlining data processing pipelines, and leveraging caching mechanisms to reduce latency 

and improve responsiveness. Performance optimization initiatives ensure that placement 
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engines can deliver timely insights and recommendations, even when operating under high-

demand conditions. 

2.3.2 Current Status 

As of the present time, research in the field of AI-enabled placement engines is characterized 

by a dynamic landscape of exploration, innovation, and collaboration. The current status of 

research reflects a multidisciplinary approach, with contributions from computer science, 

artificial intelligence, operations research, and domain-specific fields. Key aspects of the 

current status of research in AI-enabled placement engines include: 

Advanced Algorithms and Models: Researchers are continuously developing and refining 

algorithms and models tailored to the specific requirements of placement engines. This 

includes advancements in machine learning algorithms, graph analytics techniques, 

optimization methods, and probabilistic reasoning models. Novel approaches such as deep 

reinforcement learning, transfer learning, and ensemble methods are being explored to 

improve the accuracy, efficiency, and adaptability of placement engine algorithms. 

Scalability and Efficiency: Scalability and efficiency remain crucial areas of focus in research, 

particularly with the increasing volume, velocity, and variety of data processed by placement 

engines. Research efforts are directed towards developing scalable algorithms, distributed 

computing architectures, and parallel processing techniques to handle large-scale datasets 

and complex computational workloads efficiently. Innovations in data partitioning, caching 

mechanisms, and distributed storage systems are aimed at reducing latency and improving 

responsiveness in placement engine operations. 

2.4 Roadmap 

Collaboration with our partners is fundamental to the successful completion of all components, 

milestone achievements, and the overall maturation of each element. By aligning closely with 

our partners, we ensure that integration begins seamlessly within our dedicated integration 

environment, tailored to the unique needs of each component. This collaborative approach 

fosters efficient communication, smooth workflow coordination, and ultimately accelerates the 

progress towards our shared goals. 
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3. AI/ML-based workload placement 

This section describes our AI/ML-based solution to workload placement, comprised of two 

main components (see Figure 1). The first component is the forecasting model, which predicts 

the future workload demand. Based on such predictions, the second component, i.e. the 

orchestrator, plans and prepares the resources to meet the predicted workload and ultimately 

provide for the real incoming workload.  

 

 

Figure 1: Workload prediction and placement scheme  
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3.1 
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3.1 Objectives 
3.1 

The main objective of this component is to forecast the incoming flux of workload and when 

arrived, to place them on various available worker nodes. 

3.2 Research 

3.2.1 Forecasting component 

System managers and cloud orchestrators typically leverage future workload predictions to 

make informed decisions on resource/workload placement, where the ultimate goal of the 

allocation is to meet customers’ demands while reducing the provisioning cost. 

Workload forecasting is challenging due to workload patterns being highly irregular. The 

literature tackles the problem as a time series analysis task and has proposed state-of-the-art 

solutions using statistical, machine learning and deep learning approaches. These models 

often provide point estimate predictions for average future workload demand within a limited 

time window (typically five or ten minutes). However, recent research has proposed models 

that can provide uncertainty measures for such predictions, which tell how confident a model 

is about a prediction. 

Uncertainty can help resource managers make more informed decisions when optimizing, for 

example, the performance vs energy trade-off, approaching the problem based on the degree 

of a prediction’s confidence. For example, when a workload demand with low uncertainty is 

predicted, a proportion of the extra resources allocated to meet the predicted demand (i.e. the 

safety margin) can be placed in a low power state with minimal energy consumption (e.g. sleep 

state). When the uncertainty of predictions is high, the safety margin resources might be set 

to a more responsive state (e.g. idle state), sacrificing energy efficiency. 

Motivated by the above considerations, we designed and implemented several ML-based 

uncertainty-aware workload forecasters. We also proposed an offline evaluation to assess the 

impact of uncertainty-aware predictions on the performance vs cost trade-off, where we 

express the cost in terms of energy savings. In the evaluation, we simulate two real-world cloud 

scenarios similar to and relevant to GLACIATION use cases, where an optimizer leverages 

workload predictions to allocate resources to satisfy demand while minimizing energy waste. 

Our evaluation assumes the existence of N number of GPUs of different specifications 

distributed across several server machines I as resources available to cover workload demand. 

In particular, we consider running and sleeping states for a server machine. When sleeping, 

the server does not incur any energy cost, but its GPUs are not available for use. When 

running, its GPUs are available to cover the incoming workload demand, but there is an energy 

cost to keep the server awake. There is also the possibility of waking up a server, again with 

an energy cost. We consider three states for a GPU: sleeping, idling and running. When 

sleeping, GPUs do not incur any energy cost and are available for incoming workload with a 

negligible delay. When idling, GPUs consume a reduced amount of energy and are 

immediately available to cover the incoming workload. When running, GPUs cover a specific 

amount of workload and consume an energy cost depending on their specification. 

We assume a workload predictor which predicts the average workload in a given time period t 

of length 5 minutes, i.e. Wt. The prediction is provided 10 minutes in advance to allow for 

resource allocation planning. The predictor is fed with the average historical workload of the 

previous 288 time windows, i.e. one day, that is used as the prediction’s context. 
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Note that workload demand can be represented in different ways depending on the specific 

scenario at hand within the scope of GLACIATION. In our research, however, we represent 

workload as the aggregated average GPU workload demand appearing in the entire 

system/cluster in a 5-minute period t (expressed in GPU units per second). 

At each period t, an independent allocator/orchestrator must allocate resources to cover the 

predicted workload demand Wt to meet a given Service Level Target (SLT), minimising the 

energy cost. In practice, it decides which servers and GPUs to run within the time window to 

cover the demand. If a required server is already running, there is no additional energy cost; if 

it is sleeping, it is woken up one minute before the period t starts and incurs the energy cost. 

Once the server runs, GPUs can be assigned to the incoming workload demand. Within t, we 

assume we cannot change the state of servers and GPUs based on real-time demand because 

the only prediction available is an average over the entire 5-minute window. 

We implemented the allocation by solving an optimization problem where decision variables 

are: 

• whether to run a server in t; 

• whether to run a specific GPU in t. 

And the following constraints: 

• enough GPU computational power is allocated to meet demand Wt; 

• if a server runs in period t, either it was already running in t-1, or it wakes up to run in 

the current period; 

• a GPU is running only if its server machine is running too. 

The problem can be solved optimally using a Mixed Integer Linear Programming (MILP) solver, 

which finds the expected energy cost if Wt is a predicted workload or an approximation of the 

actual energy cost if Wt is the real demand. In practice, the allocator must find a set of GPUs 

that are enough to service the upcoming request using the minimum amount of energy. The 

cost parameters and the constraints can be adapted to approximate the specific cluster 

system. The high number of binary variables (due to numerous GPUs and servers) makes it 

expensive for MILP to solve the problem. 

Comparing different models on thousands of predictions requires considerable computational 

effort. To overcome this issue, we deployed a heuristic based on Dantzig knapsack problem 

algorithm that fixes which servers should be running to satisfy the predicted demand. This 

approach assumes that all the GPUs in a server machine are running workload, or none of 

them is, so there is no server using only part of their GPUs. The computational power a server 

provides can be seen as the volume, while the cost of waking and running it is the value/reward 

efficiency. The goal is to fill the knapsack while minimizing the total cost/reward. The solution 

found is an upper bound; if each server contains only GPU of one type, the energy cost before 

the last server is assigned is the lower bound. So, this heuristic over-allocates at most one 

server compared to the optimal solution; in instances with thousands of servers (where the 

computational cost of the MILP is excessive), the difference is negligible. 

We evaluate the allocation in terms of a trade-off between performance and energy cost. We 

use Success Rate (SR), i.e. the percentage of times the upcoming workload is successfully 

covered by the allocation, to measure performance. To measure energy cost, we use the 

energy required to allocate the real demand with the servers allocated according to the 
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predicted one: when under-predicting demand, the unmet demand is simply dropped (the 

energy cost will be rewarded, and the SR will be penalised); when over-predicting, the SR will 

be rewarded, and the energy cost penalised. 

All models we describe below, except for LSTM-Q, predict a workload probability distribution 

of the future workload demand as a Gaussian distribution with parameters µ (i.e. mean) and σ 

(i.e. standard deviation). From this probability distribution, we can compute the confidence 

interval (CI) corresponding to the desired SLT and take its upper bound as the final workload 

prediction Wt. The LSTM-Q provides predictions naturally associated with a specific SLT, i.e. 

quantile-based, which we take as the final workload prediction. 

• Hybrid Bayesian Neural Network (HBNN): is a Long Short-Term Memory (LSTM)-

based neural network optimised via variational inference where the last layer is 

Bayesian and models the epistemic uncertainty. The network's output, i.e. the 

distributional layer, captures the aleatoric uncertainty. 

• HBNN++: derived from the HBNN, this architecture presents two Bayesian layers. The 

first one replaces the 1DCNN layer of the HBNN, and it captures the aleatoric 

uncertainty. The second one is positioned as the last layer of the architecture, and its 

output provides a non-deterministic pointwise prediction. We run the inference step 30 

times and compute µ and σ of the Gaussian distribution. 

• LSTM Quantile (LSTM-Q): this LSTM's variation outputs quantiles, thus making the 

model distribution independent from the Gaussian assumption. The benefit of quantile 

optimisation is to make a model more robust to outliers (common in workload 

forecasting) and to capture the aleatoric uncertainty. We train different models for 

different SLTs. 

• C-LSTM: from Rossi et al. 2022, this traditional LSTM-based model outputs µ 

(deterministically), while σ is inferred from the training set as the standard deviation 

that a confidence interval should have to meet a specific SLT (and this value is constant 

for all the predictions). 

• Prophet: uses an additive model to best capture trends and seasonality in the data. It 

has already been used for cloud workload prediction, but its performance in 

probabilistic predictions is still under-investigated in this domain. 

Inspired by the Persistence Mode (PM, where Persistence Mode is the term for a user-settable 

driver property that keeps a target GPU initialized even when no clients are connected to it) 

option of real-world GPU servers, we implemented and ran two scenarios and used the offline 

evaluation presented earlier to assess the effectiveness of the uncertainty-aware forecasting 

models. These scenarios differ based on the default status of the server’s GPUs when the 

server is running: 

• PMoff. When the persistence mode is off, we consider GPUs to be in a sleep state by 

default while the server runs. GPUs are wakened up accordingly to meet workload (with 

some negligible delay of a few seconds); when no demand is available, there is no 

energy cost to pay. This scenario simulates a medium-responsive system where 

applications do not require real-time computations. In this case, the GPUs do not have 

to be idling even if the server that contains them is on. 

• PMon. When the persistence mode is on, we consider GPUs idling by default while the 

server runs. When demand is assigned to a GPU, the GPU is immediately available to 
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meet workload (with no delay); when no demand is assigned, there is an idle energy 

cost to pay, i.e. 20% of the maximum computational power in our experiments. This 

scenario simulates a high-responsive system where applications require real-time 

computations, e.g. gaming. 

We also implemented two baselines: 

• oracle, predicting the true demand -- the allocator provides maximum SR with minimal 

energy consumption; 

• naive, which always predicts the maximum workload that the whole system can cover. 

The allocator thus keeps all servers running for all periods, resulting in the maximum 

SR with maximum energy consumption. 

We preprocessed Alibaba GPU cluster data and partition data in time intervals of 5 minutes. 

The resulting dataset is a time series where each data point represents the aggregated 

average GPU workload demand appearing in the entire cluster in a 5 minutes period t 

(expressed in GPU units per second). We crafted a training set of 20 days (5760 data points) 

and a test set of 8.6 days (2476 data points). We train forecasting models on the training set 

and test them on the test set. We also crafted specifications of the GPUs in the cluster and 

their distribution across server machines (see Table 1). From that, we estimated energy 

consumption for a GPU running, sleeping or idling, and we use expert knowledge to estimate 

the cost associated with running and booting up servers. 

 

Name # GPUs # servers # GPUs 
per  

server 

Max. comp. 
power 

(units/s) 
 

Max. power 
cons. 
(kWh) 

P100 1596 798 2 5821.61 0.0208 

T4 994 497 2 4158.29 0.0058 

V100 1912 239 8 8316.59 0.0233 

MISC 2240 280 8 6513.58 0.0208 

Total 6742 1814    

Table 1: GPU specification and server details composing the Alibaba cluster.  

The results of our experiments are depicted in Figure 2 and Figure 3. Figure 2 shows results 

for the PMoff scenario, where the oracle achieves a 100% SR and a relatively small energy 

savings of 5.5%. Prophet is good at meeting its SLTs but is the worst regarding energy savings. 

Interestingly, all the other models can save more energy but at the expense of some SR 

percentage points. All the models show balanced and interesting trade-offs. All models are 

relatively close in energy savings (i.e. within 5.1% and 6.2%), but HBNN++ has the best trade-

off (e.g. furthest right on the red horizontal line showing a 0.95 SLT) because it can meet most 

of its SLT while saving energy. 
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Figure 2: Results for scenario PMoff (Persistent Mode off). We report the ten trade-off values 
corresponding to different SLT in {0.9, 0.91, ..., 0.99} (from left to right) for each predictor. The models 
with the best trade-off should be on the top right hand of the plot. The red horizontal line indicates the 

0.95 SLT, for reference.  

Figure 3 shows results for the PMon scenario, where the oracle achieves a 100% SR and 

energy savings of 30.1%. Prophet and C-LSTM behave similarly to the previous scenario and 

show less balanced trade-offs. Trade-offs for the other models are more subtle. LSTM-Q 

appears to provide greater energy savings, but it consistently undershoots its target SLTs. 

HBNN provides the best performance, as it consistently exceeds its SLTs while saving 

between 27% and 28% of the energy costs. 
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 Figure 3: Results for scenario PMon (Persistent Mode On). We report the ten trade-off values 
corresponding to different SLT in {0.9, 0.91, .., 0.99} (from left to right) for each predictor. The models with 

the best trade-off should be on the top right hand of the plot. The red horizontal line indicates the 0.95 
SLT, for reference. 

These results can be further explained in terms of under-allocation (undershooting the 

prediction) and overa-llocation (overshooting the prediction). In the first scenario, over-

allocation has little impact on energy cost because it does not waste much energy (only a 

small, fixed cost for running a server), while the opposite is true for the second scenario (due 

to idling GPUs that waste more energy). Under-allocation always influences the trade-off, as 

under-allocating resources penalises SR but saves energy. Thus, in the first scenario models 

that overshoot predictions. 

In conclusion, we showed that the proposed forecasting model could be adapted to fit different 

data centre settings. We provided a heuristic that quickly computes a near-optimal policy, 

making it usable for comparing prediction models on large datasets. Results show that our 

framework provides insights into the trade-off between service performance and energy cost 

of different predictors. Our analysis reveals that different predictions (with uncertainty) lead to 

different trade-offs under different scenarios (although they are quite consistent across 

different SLTs). While HBNN++ shows the best trade-off for PMoff, HBNN offers the best trade-

off for PMon. 

3.2.2 Technology Selection 

The components are developed mainly in Python, with the different ML models and training 

pipelines also in Python. However, the cluster status is obtained from telemetry system, 

synthetic data generators, and a temporal graph database that is built upon Neo4J. 
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3.2.3 Satisfying the GLACIATION Requirements 

The forecasting and placement modules are working in experimental environments. Integrating 

them with Kubernetes scheduling mechanism, other platform services such as the DKG, the 

telemetry and power instrumentation components is under investigation and development. 

Also, integrating the component with the security system of the data movement engine as well 

as with the privacy enforcement component is under research. 

3.3 Advancements 

3.3.1 Developments Performed 

Experimental setups are in place.  

The placement module is capable of finding the proper worker node; however, the prediction 

accuracy is not stable yet. Also, the power consumption is not included in the selection criteria 

so far, mainly because the power consumption datasets at hand are not realistic.  

3.3.2 Current Status 

The placement module is a system of 4 containers that work as a workflow consisting of a data 

acquisition step, data transformation step, a temporal graph indicating the cluster (data center) 

status, and the placement model for training and serving phases. All the containers and the 

workflow are up and running. 

3.4 Roadmap 

The placement module must be trained using power data that is planned to be provided by 

DELL and HIRO. Also, the security and privacy interfaces are planned to be integrated into the 

Kubernetes scheduling pipeline, namely sorting and filtering steps. 
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4. Swarm intelligence-based orchestration 

4.1 Objectives 

The data search and data management (movement) in the dynamic environment of the 

Distributed Knowledge Graph (DKG) is a challenging problem. In the context of Swarm 

Intelligence-based Orchestration, we will refer to the devices containing a part of the DKG as 

nodes. To move data efficiently between nodes from where it is stored to where it is most 

frequently needed is a task that requires multilevel assessment. Here we discuss a possible 

solution to this problem based on the Ant Optimization Search Algorithm. We facilitate a search 

for results of a query in a DKG over a network using pheromone abstraction. Simple rules to 

move data from a node to a node can be devised utilizing the pheromone landscape emerged 

because of the execution of the search algorithm. Thus, search algorithm and data movement 

become entangled. 

Below we describe our research and development regarding the search algorithm as the basis 

for our further design of data movement. The data movement development will be discussed 

in future deliverables. 

We give a general overview of design principles and research results. A more detailed and 

technical manuscript is now under preparation to be submitted for a special scientific 

conference. 

4.2 Research 

4.2.1 Findings 

To study a network configuration relevant in cloud-fog-edge context we came up with a three-

layered tree-like topology. The core level represents cloud servers which are connected to 

each other in a full mesh.  The intermediate level represents “fog” devices in between cloud 

and edge. The third level - the leaves of the tree-like structure – represent edge devices. This 

network structure is illustrated in Figure 4. 

We employ the ant optimization mechanism to facilitate the search in such a network. Incoming 

query is represented by a Forward Ant abstraction. Forward Ants move through network 

following pheromone trails. The pheromone trails are created by Backward Ants. Once a 

Forward Ant finds a requested resource it sends a Backward Ant which drops pheromones on 

each node between the found resource and the query source. 
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Figure 4: Network structure. Three layers: core (orange), fog (green), edge (blue). 

The resulting pheromone map can be visualized if we color each node according to the total 

pheromone level it possesses, however discarding the directional information for the sake of 

simplified representation. An example of such a pheromone map is shown in Figure 5. 

 

Figure 5: Pheromone map of a network with 30 nodes. Red R marks nodes with resources that answer the 

query. 

To assess the efficiency of a search algorithm different measures can be employed. For the 

moment we have focused on the hit rate – ratio of the resources found during a query to the 

total amount of resources in the network and the number of visited nodes. In our studies we 

vary: 

• pheromone evaporation coefficient – special tuning parameter to let the pheromone 

routes be removed with time and thus for the search algorithm to avoid being trapped 

within a sub-optimal solution; 

• probability of switch between exploration and exploitation strategies is another 

parameter of interest. 

Exploration strategy means that ants try to build new routes, while for exploitation strategy 

they stick to the strongest existing pheromone direction. 
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The time series of hit rate serves as primary data to be analyzed. An example of this time 

series is shown in Figure 6 for low values of pheromone evaporation and exploitation 

strategy probability. 

 

Figure 6: Hit rate as a function of time. The number of resources in network is given in legend. Network 
size is 64 nodes. The different colors are for the different total number of resources that answer the query 

in the system. 

Further statistical analysis of this and similar time series is an ongoing investigation and will 

be presented in a manuscript which is right now in preparation. 

4.2.2 Technology Selection 

The swarming technology behind the ant optimization algorithm is well-developed at the 

Lakeside Labs and serves as the essential part of the competences. The algorithm is realized 

using MESA, an agent-based simulation package for Python programming language. The 

choice of Python pursues two goals. The first goal is to streamline the simulation stage and 

data analysis profiting from an extensive toolset of libraries available for Python. The second 

goal is to facilitate integration with the whole GLACIATION framework where the algorithm will 

be used for search on a network of real devices. 

4.2.3 Satisfying the GLACIATION Requirements 

We satisfy the GLACIATION requirements by providing energy efficient search solution that is 

very adaptive and can allow for seamless processing of privacy data concerns. 

4.3 Advancements 

4.3.1 Developments Performed 

We developed simulation code for two network topologies. The first one was a half-mesh 

topology which we rendered unrealistic after initial assessment. Next, we have been 

developing a tree-like topology. Also, we are working on adopting our code to share with other 

partners for the purpose of integration into the GLACIATION framework. 
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4.3.2 Current Status 

Currently simulations are up and running. We collect data and perform detailed statistical 

analysis. The goal of the analysis is to find the parameter values, which maximize desired 

outputs of the search algorithm. Also, we are studying which configurations are best suited for 

ant optimization algorithm and which configurations pose challenges to it. 

4.4 Roadmap 

Before the next deliverable we expect to have a full understanding of the search algorithm. 

This would result in publication of obtained results in scientific literature. Another important 

goal will be to develop the prototype of data movement mechanism. Search and data 

movement mechanisms working together in a synergetic manner would be our primal goal.  
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5. Secure data management framework for AI 

This section details the development of a secure data management framework specifically 

tailored to the GLACIATION platform's edge computing focus. The task it is associated with, 

Task 3.5, highlights the challenges of managing data in this distributed AI environment. This 

section also details the solutions chosen to satisfy the requirements of managing data in this 

environment. Finally, we provide the current state of the implementation and roadmap of the 

Secure data management framework. Furthermore, the software solution implemented for the 

Secure data management framework for AI has been given the internal codename “Verdelix”. 

The name is a synthesis of two core concepts: Verde: Derived from the Spanish and Italian 

word for "green," which implies environmental, sustainable, or eco-friendly connotations and 

Helix: A term used to describe the spiral structure of a double-stranded DNA molecule in 

biology. The helix can metaphorically represent structure, continuity, and interwoven elements. 

In a broader sense, it may signify intertwined data or a structured approach. Together, Verdelix 

suggests an eco-friendly, structured, and possibly intertwined or integrated approach, 

especially when applied to data or technology. It carries both an environmental consciousness 

and a sense of intricate, yet structured design. The name encapsulates the idea of a 

sustainable, green approach to structured or complex systems. 

5.1 Objectives 

Big data has a number of challenges (Wang, 2017). Big data generated by edge networks 

differs significantly from traditional data. Its rapid inflow, semi-structured/unstructured nature, 

distributed sources, and often real-time access requirements present unique complexities. 

Furthermore, edge devices may exhibit strong correlations across dimensions like time and 

location, and they may form social relationships. Content sharing among devices in a peer-to-

peer fashion adds another layer of complexity, highlighting the need for sophisticated analytical 

methods to extract meaningful insights. Cloud-based analytics can handle the scale of IoT big 

data but face limitations due to its distinct structure, real-time demands, and the weak 

semantics of raw sensor data. The data analytics lifecycle involves raw data collection, 

aggregation, and transmission to the cloud.  A critical goal lies in harnessing the patterns within 

edge big data (e.g., user behavior, data correlations) to improve network performance. Data 

interpretation remains a core challenge, requiring techniques to handle real-world noise, 

uncertainty, and the need for reliable sensor calibration to ensure the trustworthiness of 

decisions based on this data. 

Each of the requirements for Verdelix software comes with its own challenges that the 

proposed solution must account for.  

 

Table 2 Verdelix Requirements 

Category Requirement 

Data Lifecycle 
Management 

Data Availability: The framework shall enable the seamless provision of 
data to distributed AI algorithms running on edge compute resources 
with minimal latency.  
Data Destruction: The framework shall provide secure and automated 
mechanisms for data destruction at edge nodes while adhering to data 
retention policies. This must function in a dynamic environment with 
fluctuating compute resources. 
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Access Control: The framework shall implement granular data access 
policies, governing user and algorithm permissions, and support 
auditing of access patterns.  
Cloud Archival: The framework shall determine when data is no longer 
actively needed at the edge and facilitate secure archival to cloud 
storage, complying with any applicable regulations. 

Distributed 
Storage 

Data Accessibility: The framework shall ensure data is accessible when 
and where required by edge AI algorithms, taking into account network 
constraints.  
Placement Optimization: The framework shall intelligently determine 
optimal data storage locations (edge, fog, or cloud) based on usage 
patterns, latency requirements, and security considerations.  
Replication and Resilience: The framework shall employ replication 
strategies to maintain fault tolerance, offering a configurable trade-off 
between redundancy and storage efficiency across edge resources. 

Data 
Provenance 

Tracking: The framework shall maintain a comprehensive history of data 
origin, transformations, and usage to support auditing and establish trust 
in AI outcomes. 

Data 
Sovereignty 

Ownership: The framework shall guarantee data producers retain 
ownership of their data throughout its lifecycle.  
Usage Control: The framework shall implement mechanisms for data 
producers to enforce strict control over how their data is accessed and 
processed, respecting jurisdictional and project-specific compliance 
requirements. 

Data Vocabulary GLACIATION Standardization: The framework shall define and manage 
consistent data vocabularies, including metadata and ontologies, to 
enable semantic interoperability within the GLACIATION platform. 

 

5.2 Research 

The Verdelix implementation relies on literature reviews, state-of-the-art reviews, and 

systematic reviews that already exist in various journals and conference proceedings as well 

as a review of existing data management solutions that exist in open-source form.  

5.2.1 Findings 

Based on reviewing (Al-Sai, 2020) (Antonios, 2023) (Özsu, 2016) (Siddiqa, 2016), we have 

made the following findings (see Table 2) relevant to the development of the Verdelix software. 

(Al-Sai, 2020) provides findings which require the focus on the success categories illustrated 

in Table 3 Big Data Success Factors. 

 

Table 3 Big Data Success Factors 

Category Focus 

Technology 

Tools and systems for data collection, storage, processing, analysis, and 
applications. Emphasizes system performance, real-time availability, data 
quality, and integration with existing tools. 

Data 
Management 

Administrative processes involved in capturing, processing, validating, 
storing, and protecting data to ensure its secure accessibility, reliability, 
and timeliness. 
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Category Focus 

Governance 

Social activities, processes, practices, and policies to manage Big Data 
projects effectively. Ensures appropriate conduct and compliance with 
legal frameworks and data security measures. 

 

Furthermore, there are also factors based on the reliance of the GLACIATION platform on 

semantic interoperability and the Table 4 use of a Novel Metadata Fabric that must be 

accounted for. (Antonios, 2023) presents the maturity levels relevant to semantic 

interoperability solutions which are presented in Table 4 Maturity Levels for Semantic 

Interoperability. 

Table 4 Maturity Levels for Semantic Interoperability 

Level Description 

Level 1 – Defined 
Modeling abilities prepared for semantic interoperability, with 

solutions available in isolated places and limited scalability. 

Level 2 – Coordinated 

Basic modeling abilities, with some data and integration 

management. Solutions available in a limited number of areas with 

basic scalability. 

Level 3 – Integrated 
Well-defined modeling abilities incorporating data and integration 

management. Solutions widely available and good scalability. 

Level 4 – Optimized 

Well-defined and optimized modeling abilities, with seamless 

incorporation of data and integration management. Highly scalable 

and optimized for performance. 

 

(Özsu, 2016) presents the challenges and approaches to RDF Data Management which aligns 

with our Novel Metadata Fabric approach. Specifically, Table 5 RDF Data Management 

Approachespresents the challenges in RDF Data Management and also the technologies are 

presented in Table 6 RDF Data Management Technologies. 

 

 

Table 5 RDF Data Management Approaches 

Approach Description 

Cloud-based 
Approaches 

Leveraging cloud platforms and MapReduce for managing RDF 
datasets, using HDFS for storage and MapReduce for query 
processing. 

Partitioning-based 
Approaches 

Dividing an RDF graph into fragments placed at different sites, with 
each site hosting a centralized RDF store and processing subqueries 
locally. 

Federated Systems 
Running SPARQL queries over multiple SPARQL endpoints, with 
precomputed metadata for each endpoint and decomposed 
subqueries. 
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Approach Description 

Partial Query 
Evaluation Approaches 

Utilizing partial function evaluation for distributed SPARQL 
processing, where each site executes the query on its local RDF 
graph fragment. 

 

Table 6 RDF Data Management Technologies 

Technology Description 

Ontologies 
For knowledge representation, structuring data for better accessibility and 
understanding. 

Linked Open Data 
(LOD) 

Connecting datasets across the web, making data more interlinked and 
usable. 

Knowledge Graphs 
Integrating and managing data through a graph-based structure, 
facilitating complex data queries and analysis. 

Semantic 
Annotation 

Enriching data with metadata for improved context and relevance, aiding 
in data discovery and utilization. 

Semantic 
Reasoning 

Inferring new knowledge from existing data, enabling more intelligent 
decision-making and insights. 

 

Finally, (Siddiqa, 2016), presents solutions for big data management, Table 7 Big Data 

Management Solutions, and a taxonomy in Table 8 Taxonomy of Big Data Management. 

Table 7 Big Data Management Solutions 

Problem 
Domain Solution 

Clustering SOHAC, K-Mean Algorithm, Artificial Bee Colony (ABC) optimization 

Replication Fuzzy Logic, ABC optimization algorithm, Dynamic Data Replication 

Indexing Composite Tree, Support Vector Machine, Fuzzy Logic 

Transmission 
Wavelength Division Multiplexing, Orthogonal Frequency-Division 
Multiplexing, Traffic Separating 

Cleansing 
BIO-AJAX, Minimum Covariance Determinant, Conditional Functional 
Dependencies 

Classification Statistics, Decision Trees 

Prediction Neural Network, Fuzzy Logic, Support Vector Machine 

Privacy 
Privacy-preserving cost reducing Heuristic Algorithm, Portable Data Binding, 
Expectation-maximization algorithm 

Integrity Scalable PDP, POSD, PDP 

Confidentiality DES, Triple DES, RC4 

Availability Erasure coding, Replication 

 

Table 8 Taxonomy of Big Data Management 

Component Sub-components Key Focus 

Data Storage 
Clustering, Replication, 
Indexing 

Optimizing storage space and ensuring 
efficient data retrieval. 
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Component Sub-components Key Focus 

Pre-processing 
Transmission, Cleansing 

Improving data quality and preparing data for 
analysis. 

Processing 
Classification, Prediction 

Analyzing and making predictions from 
processed data. 

Security 
Privacy, Integrity, 
Confidentiality, Availability 

Protecting data against unauthorized access, 
ensuring data integrity and availability. 

 

Based on our review of existing literature, Verdelix must adopt a secure data management 

framework that emphasizes the success factors outlined in Table 2 Verdelix Requirements 

(technology, data management, governance).  To leverage the GLACIATION platform, it's 

crucial to target high levels of semantic interoperability maturity (Level 3 - Optimized).  The 

framework should incorporate suitable RDF data management approaches (Table 5 RDF Data 

Management Approaches), potentially combining cloud-based, partitioning, federated, and 

partial query evaluation methods.  Lessons from big data management solutions (Table 7 Big 

Data Management Solutions) can be applied, while proactively addressing security across 

privacy, integrity, confidentiality, and availability (Table 8 Taxonomy of Big Data Management). 

5.2.2 Technology Selection 

Solutions which satisfy the requirements presented in the previous section exist in published 

literature. Based on a systematic review of such solutions, the closest which satisfies the 

Verdelix requirements as well as aligning with the overall GLACIATION architecture and tools 

is presented in (Wamhof, 2023). The paper discusses the Agri-Gaia project, which aims to 

enhance metadata management and asset exchange in agriculture through a distributed, open 

data architecture. It introduces a federated ecosystem architecture based on Gaia-X principles, 

emphasizing data sovereignty and secure data exchange. The approach utilizes an ontology-

based metadata management system, leveraging RDF for a flexible, extensible metadata 

graph. This system supports dynamic metadata extensions, allowing data and service 

providers to adapt metadata as needed. The architecture also incorporates technology 

decisions for data storage, metadata storage, and data exchange, using tools like Apache Jena 

Fuseki for RDF graph storage and MinIO S3 for dataset storage. The paper highlights the 

importance of controlled vocabularies and ontologies for unambiguous, universal data 

descriptions, contributing to a common understanding and facilitating data exchange in the 

agricultural sector.  

The architecture of the Agri-Gaia project is based on a federated approach that integrates 

several platforms, a marketplace, and a dataspace authority to foster a robust and sovereign 

ecosystem for data storage, processing, and exchange in agriculture. At its core, Agri-Gaia 

employs a federated architecture that includes multiple platforms providing sovereign data 

storage and processing services. This setup allows farmers to contribute data through any 

platform, while developers can use these platforms to process data and train AI models. Data 

storage is typically offered as object storage, turning each platform into a data lake. Metadata 

management within each platform is facilitated through an ontology-based data catalogue that 

describes the assets available on the platform. RDF-based graph databases are utilized to 

store the data catalogue, ensuring a flexible and extensible metadata management system. 

The project also focuses on the integration with the Gaia-X European data space. Such 

integration is also desirable for GLACIATION. 
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Apache Jena Fuseki is discussed in more detail in Work Package 6 which leverages Jena as 

the technology underpinning the Distributed Knowledge Graph. However, to ensure 

completeness of this deliverable, a short description of Apache Jena Fuseki is provided here. 

Apache Jena Fuseki is a server for RDF data, facilitating the storage and querying of metadata 

in a graph format. It supports SPARQL, an RDF query language, enabling the efficient retrieval 

and manipulation of stored data, including the GLACIATION metadata model and Shapes 

graph, directly within the Apache Jena Fuseki storage environment.  

Following (Wamhof, 2023) MinIO is utilized as a scalable object storage server within the 

GLACIATION project, managing datasets and models in the form of buckets. This storage 

solution enables the handling of various data types, such as image and tabular datasets, 

without the need to incorporate additional technologies. MinIO's compatibility with S3 storage 

standards allows for efficient data management and interaction through different SDKs, 

supporting a wide range of use cases in the agricultural ecosystem. 

GLACIATION also has strict privacy and security requirements. Open Policy Agent has been 

chosen to assist with satisfying these requirements. Open Policy Agent (OPA) is an open-

source policy engine that enables unified policy enforcement across a wide range of software 

systems. It decouples policy decision-making from policy enforcement, allowing users to 

author policies in a high-level language and then query these policies at runtime. OPA utilizes 

policies written in Rego, a declarative query language designed specifically for expressing 

policies over complex hierarchical data structures. It is particularly useful for controlling access 

to data and APIs, ensuring compliance with specific rules, and automating policy enforcement 

across different layers of an infrastructure. Policy enforcement is implemented by utilizing OPA 

to choose appropriate tooling from Work Package 4 to enforce the policy. It should be noted 

that the RDF triple store follows a Partitioning-based Approach, presented in Table 5 RDF 

Data Management Approaches. 

5.2.3 Satisfying the GLACIATION Requirements 

Data Management requirements are presented in Table 9 Data Management Requirements. While 
requirements validation is out of scope for this deliverable (requirements validation is a task 
within Work Package 7), they are presented here to provide context with regards the 
technologies chosen and how those technologies will satisfy the GLACIATION requirements. 
 

Table 9 Data Management Requirements 

Requirements 
ID# 

Requirements Comments 

REQ_001 Optimize data consumed 
near producer with 
distribution of data and 
sending back statistical 
data or essential results 

To improve efficiency in computational and energetic 
resources required by the service. Saving in centrally large 
amount of data 

REQ_007 Data lifecycle management 
according to policies and 
regulation (GDPR, GRI and 
Italian regulation) 

So that improve or at least maintain actual security, 
compliances and rules  

REQ_010 Services availability (24/7) 
and resiliency 
management 

Governance and risk control, based on data propriety and 
privacy and incident management rule 

REQ_011 Store only needed data for 
ML/AI workload placement 
and energy saving 

Avoid unnecessary data 

REQ_012 Ensure data protection with 
backup  

Avoid losing important data. 
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REQ_019 Manufacturing cloud 
computing 

Must be able to access and analyze the big data and deploys 
it for Manufacturing to offer better manufacturing services 

REQ_020 Data movement Should provide fast, efficient and secured movement of data 
generated from robots, cobots, other machines 

REQ_021 Data wrapping  Ingestion mechanism should implement data wrapping 
functions as per the defined data governance model and 
different levels of sensitivity and risk, ensuring minimal 
latency 

REQ_022 Data assessment Should allow for data assessment of completeness ensuring 
data quality 

REQ_023 Real-time data streaming Ingestion mechanism should support real-time stream data 
handling and ingestion from multiple concurrent sources 

REQ_024 Batch handling Ingestion mechanism should support batch data handling, 
which will enable the best level of automation. 

REQ_025 Data sharing / restrictions Platform should allow data providers to share data or restrict 
with a particular data consumer or with multiple stake holders 
as needed while protecting sensitive data 

REQ_027 Distributed data processing  Must have a distributed data processing system to enable 
data processing and analytics across multiple nodes or 
clusters to handle large volumes of data 

REQ_031 Data ownership and control  Must provide clear data ownership and control mechanisms 
to ensure that each factory maintains control over its own 
data 

REQ_032 Deletion process Platform should provide guarantees over data deletion 
following necessary protocols 

REQ_033 Policy configuration Policies for data sets and platform users should be 
configurable by the data provider 

REQ_034 Data Protection Data must be protected at rest and in transfer, parameters 
should be configurable by the data owner protecting data 
controller rights 

REQ_035 Data Risk assessment System should  be designed to evaluate the data provided by 
each contributor to determine the relative sensitivity of the 
data elements provided 

REQ_036 Data Governance & 
License models 

Platform should define data governance models for the data 
sets with clear language and set of definitions and must 
support various license model 

REQ_037 Data Storage  Must be capable of secure and reliable storage, including 
local, cloud, or hybrid and retrieval of large volumes of data 
from edge computing devices and other systems 

REQ_038 Storage architecture  Must have a scalable storage architecture that will 
consolidate and share data with every smart manufacturing 
application, including AI, computer vision and data analytics 

 

Our technologies satisfy the data related requirements as illustrated in Table 10 Verdelix 

Requirements Alignment. 
 

Table 10 Verdelix Requirements Alignment 

Requirement 
ID MinIO 

Apache Jena 
Fuseki 

Open Policy 
Agent Interactions 

REQ_001 Partial Partial  

Analytics Component, Swarm Intelligence Data 
Orchestrator 

REQ_007   Yes  

REQ_010 Partial  Partial  

REQ_011 Yes    

REQ_012 Yes    

REQ_019 Yes Yes   

REQ_020    Swarm Intelligence Data Orchestrator 
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REQ_021    Data wrapping provided by WP4 

REQ_022    Data semantification & normalisation 

REQ_023 Partial Partial  Swarm Intelligence Data Orchestrator, Apache NiFi 

REQ_024 Partial Partial  Swarm Intelligence Data Orchestrator, Apache NiFi 

REQ_025   Yes  

REQ_027 Partial Partial  Distributed processing framework 

REQ_031   Yes  

REQ_032   Yes  

REQ_033   Yes  

REQ_034   Yes  

REQ_035   Yes Rego policy 

REQ_036   Yes Rego policy 

REQ_037 Yes Yes   

REQ_038 Yes    

 

5.3 Advancements 

5.3.1 Developments Performed 

The approach taken in development of the Verdelix software follows the methodology used in 

the integration tasks Task 2.4 and Task 7.2, more specifically breaking the development into 

milestones. The milestones for Verdelix are presented in Table 11 Verdelix Milestones. 

Table 11 Verdelix Milestones 

Milestone Focus Key Deliverables Outcome 

Milestone 1: 
Service Design 
and Planning 

Understanding 
service 
requirements and 
interactions 

Service Overview, Service 
Dependencies Diagrams, 
Service Architecture 
Diagrams 

Shared 
understanding, 
reduces integration 
issues later 

Milestone 2: API 
Contract and 
Data Model 

Formalizing how 
services 
communicate, and 
the data structure 

Domain Model/Terminology, 
REST/OpenAPI 
Specification 

Parallel 
development, basis 
for automated 
testing 

Milestone 3: 
Service Stubs 
and Integration 
Testing 

Creating basic 
service versions to 
test in an isolated 
environment 

Service Stubs (basic API, 
likely hard-coded 
responses), Integration 
Environment (even if basic) 

Early detection of 
integration 
mismatches 

Milestone 4: 
Demo-Ready 
Component 

Showcase progress 
with a mature 
component 

Demo-ready component 
(deployable in partner 
environment) 

Demonstrates 
tangible progress, 
validates approach 
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5.3.2 Current Status 

Verdelix has currently achieved Milestone 4 and has its own repository in the GLACIATION 

github. Furthermore, it has been deployed within the Use Case 2 (Dell Manufacturing) 

validation platform. 

5.4 Roadmap 

The remaining milestones for the Secure Data Management Framework for AI are presented 

in Table 12 Remaining Verdelix Milestones. 

Table 12 Remaining Verdelix Milestones 

Milestone Description Key Deliverables Outcome 

Milestone 5: 
Component 
Development & 
Unit Testing 

Build out full 
component 
functionality, 
conduct isolated 
testing 

* Fully implemented 
components * Unit test 
suites with good 
coverage 

Robust, well-tested 
building blocks 

Milestone 6: End-
to-End Integration 
& Testing 

Connect 
components, test 
system-wide data 
flow 

* Dev environment 
deployment setup * 
End-to-end test 
scenarios 

Identifies integration 
issues, baseline 
functionality 

Milestone 7: 
Performance 
Testing & 
Optimization 

Measure system 
performance, 
optimize where 
needed 

* Performance 
benchmarks * 
Optimization strategies 
(code, hardware, 
architecture) 

System meets 
performance 
requirements 

Milestone 8: 
Staging 
Deployment & User 
Acceptance 

Deploy in a 
production-like 
environment for 
user feedback 

* Staging environment 
setup * User 
acceptance test plans * 
Feedback and bug 
tracking 

Validates real-world 
needs, catches pre-
production issues 

Milestone 9: Use 
Case Deployment 
& Monitoring 

Release the system 
live, establish 
monitoring 

* Production 
deployment plan + 
rollback * Monitoring 
dashboards 

System serves 
users, insights into 
usage 

Milestone 10: 
Validation Against 
Requirements 

Assess the 
deployed system 
against initial 
requirements 

* Test report mapping 
requirements to cases * 
Stakeholder sign-off (if 
successful) 

Documented 
success or 
identification of 
needed adjustments 

 

The next milestones focus on transforming a demo-ready component into a fully deployed and 

validated solution. This involves thorough component development and unit testing to ensure 

individual pieces are robust. Then, end-to-end integration testing will examine how 

components work together as a system.  Next, rigorous performance testing and optimization 

will ensure the system can handle expected loads and meet performance targets. A staging 

deployment, closely mirroring the production environment, will be crucial for user acceptance 

testing to gather feedback and address issues before going live. The penultimate milestone 

involves the production deployment itself, along with establishing robust monitoring to ensure 

ongoing health and performance of the system. Finally, a thorough validation against the initial 

use case requirements will assess the project's overall success and identify any remaining 

areas for improvement.   
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6. Integration and Lab test 

6.1 Objectives 

This encompasses the integration and adaptation efforts necessary for various modules, 

components, languages, APIs, and algorithms within the GLACIATION framework. The aim is 

to create a functional prototype suitable for network-wide system testing and validation. 

Throughout this process, rigorous testing of individual components, interfaces, and the overall 

architecture will be conducted, including functional, modular, inter-modular, scalability, and 

security tests. The objective is to ensure the accuracy and efficiency of the proposal through 

comprehensive testing processes inherent to software development projects. 

6.2 Advancements 

6.2.1 Developments Performed 

To be able to achieve the previous objectives various activities have been conducted. 

A GLACIATION project has been created on GitHub with tasks for each partner to be able to 

track, show the progress and align our understanding of what need to be done. 

This tasks have been grouped in milestones. We have planned six milestones and four of them 

are in progress: 

Milestone Dates Tasks 

Milestone 5.1 Jan 25 - Feb 8 Create comprehensive documentation for the 
component including:  
- Component Overview  
- Service Dependencies  
- Service Architecture 

Milestone 5.2 Feb 8 - Feb 22 Include Domain Model and REST/OpenAPI 
Specification in the Component Documentation 
including:  
- Domain Model/Terminology - REST/OpenAPI 
Specification 

Milestone 5.3 Feb 22 - Mar 7 Make Service stubs available, capable of 
standalone run in an integration environment with 
dockerization and helm chart files.  
- Service Stubs Overview  
- Standalone Run  
- Dockerization service/component  
- Helm Chart Deployment 

Milestone 5.4 Mid-March - Cork Demo individual service/component on personal 
environment. (can be video recording) 

Milestone 5.5 End of March Gitops CI/CD:  
- automate helm chart deployment to the K8s 
cluster  
- Service implementation 

Milestone 5.6 Beginning of April -Fixing integration issues  
-Service implementation 

 

https://github.com/orgs/glaciation-heu/projects/2
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We have also conducted more than 12 design sessions to make our architecture concrete, 

align the interfaces, and remove any ambiguity in the requirements. We also have the 

integration environment in place and ready. 

 

6.2.2 Current Status 

Here is the status of the progress 

• Prediction Service & Data Storage Service (DELL)  

o Design sessions are completed (Milestone 1)   

o Working on OpenAPI specifications (Milestone 2) and their implementations  

• Metadata Service (LAKE)   

o M1 is completed. The service is designed to fulfill the requirements of the other 

services.  

o Working on OpenAPI specifications 

• Trade-off Service (ENG) 

o M1 and M2 are completed. OpenAPI definitions are in the repository.  

o M3 is ongoing  

• DKG Replica Service (HIRO)  

o Deprecated/On-Hold due to dropped requirement.   

• Replica Service (HIRO)  

o M1 is done. M2, M3 to be done  

• Data Processing and Monitoring Service (HIRO)  

o M1, M2 completed. M3 
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The status of integration tasks 

 

The Milestone completion progress 

6.3 Roadmap 

To ensure the system's overall quality and functionality, T3.6 plans to implement a robust 

CI/CD (Continuous Integration and Continuous Delivery) pipeline. This pipeline will automate 

lab testing for each software component throughout the development cycle. It aims to 

streamline development by enabling frequent integration and testing of individual components. 

Each partner's completed component will be automatically integrated into the central source 

control system, triggering automated lab tests to detect bugs or compatibility issues early on. 

The task will also organize meetings and integration sprints to bring together all the 
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components developers to achieve internal integration milestones and enhance the maturity 

of each component. 



 

Copyright © 2024 GLACIATION | DELIVERABLE D3.1 – Secure AI Enabled Placement Engine  Page 45 of 45 

Conclusions 

T3.1 has provided the result of research and experiments regarding the hardware-optimized 

processing of distributed knowledge graphs (DKGs), including work on hardware optimization 

techniques, parallel processing architectures, memory hierarchy optimization, and network 

communication optimization. 

T3.2 provided the latest status of the AI/ML-based solution to workload placement. It detailed 

the workload-forecasting model, which predicts the future workload demand and introduced 

the orchestrator, which plans and prepares the resources to meet the predicted workload and 

ultimately provide for the real incoming workload. 

T3.3 explained the distributed data search and data management (movement) in the dynamic 

environment of the Distributed Knowledge Graph (DKG) using a Swarm Intelligence-based 

Orchestration. The swarm-based search has been modelled, simulated and evaluated. 

Algorithms and technologies have been chosen. Developing a prototype and publishing the 

findings are underway. 

The outcomes of T3.4 on Ethical and Trustworthy Autonomy have been compiled into the 

Deliverable D3.3: Ethical and Privacy Impact Assessment and Recommendations, which are 

submitted alongside this deliverable at M18. 

T3.5 has carried out the work related to development of a secure data management framework 

(Verdelix) specifically tailored to the GLACIATION’s requirements. This management 

framework provides solutions for data lifecycle management, distributed storage, data 

provenance, data sovereignty, and data vocabulary. 

T3.6 has outlined the integration procedures and protocols needed to establish a lab test to 

enable all partners to formally declare their dependencies, announce their services, and 

provide containerized versions of the components. Documentations, Helm Charts, REST API 

specifications, and Service Stub generations are in place and in use by the partners. Main 

architectural components and services are defined, the APIs are specified, and 

implementations are started. 


