

Deliverable D6.2 – Script
and Microservices
Software - Intermediate
GRANT AGREEMENT NUMBER: 101070141

Ref. Ares(2023)8157481 - 29/11/2023

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 2 of 47

Project acronym: GLACIATION

Project full title: Green Responsible Privacy Preserving Data Operations

Call identifier: HORIZON-CL4-2021-DATA-01-01

Type of action: RIA

Start date: 01/10/2022

End date: 30/09/2025

Grant agreement no: 101070141

D6.2 – Script and Microservices Software - Intermediate

Executive Summary: This document reports on the work done in Work Package 6
“Edge-Core-Cloud Platform” which was carried out from
month 8 to month 14 and is aligned to T6.2 “Script and

Microservices Development”

WP: WP6

Author(s): Cem Tanrikut, Aidan OMahony, Guangyuan Piao, Peter
Forgacs, Oleksandr Chepizhko, Flavio Scaccia

Editor: Cem Tanrikut

Leading Partner: HIRO-MICRODATACENTERS B.V.

Participating Partners: DELL, MEF, HIRO, LAKE, ENG

Version: 1.0 Status: Final

Deliverable Type: Other Dissemination Level: PU - Public

Official Submission
Date:

30/11/2023 Actual Submission
Date:

30/11/2023

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 3 of 47

Disclaimer
This document contains material, which is the copyright of certain GLACIATION contractors,
and may not be reproduced or copied without permission. All GLACIATION consortium
partners have agreed to the full publication of this document if not declared “Confidential”. The
commercial use of any information contained in this document may require a license from the
proprietor of that information. The reproduction of this document or of parts of it requires an
agreement with the proprietor of that information.

The GLACIATION consortium consists of the following partners:

No. Partner Organisation Name Partner Organisation
Short Name

Country

1 MINISTERO DELL'ECONOMIA
E DELLE FINANZE

MEF IT

2 EMC INFORMATION
SYSTEMS INTERNATIONAL
UNLIMITED COMPANY

EISI IE

3 HIRO MICRODATACENTERS
B.V.

HIRO NL

4 GOTTFRIED WILHELM
LEIBNIZ UNIVERSITAET
HANNOVER

LUH DE

5 THE LISBON COUNCIL FOR
ECONOMIC
COMPETITIVENESS ASBL

LC BE

6 UNIVERSITA DEGLI STUDI DI
MILANO

UNIMI IT

7 UNIVERSITA DEGLI STUDI DI
BERGAMO

UNIBG IT

8 GEIE ERCIM ERCIM FR
9 EURECOM EURECOM FR
10 SAP SE SAP SE DE
11 UNIVERSITY COLLEGE CORK

- NATIONAL UNIVERSITY OF
IRELAND, CORK

UCC IE

12 SOGEI-SOCIETA GENERALE
D'INFORMATICA SPA

SOGEI IT

13 LAKESIDE LABS GMBH LAKE AT
14 ENGINEERING - INGEGNERIA

INFORMATICA SPA
ENG IT

15 EIDGENOESSISCHE
TECHNISCHE HOCHSCHULE
ZUERICH

ETH CH

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 4 of 47

Document Revision History

Version Description Contributions

0.1 Table of Content HIRO

0.9 Ready for internal review DELL, LAKE, MEF

1.0 Ready for submission HIRO, MEF

Authors

Authors Partner

Aidan O Mahony DELL

Guangyuan Piao DELL

Cem Tanrikut HIRO

Peter Forgacs LAKE

Oleksandr Chepizhko LAKE

Flavio Scaccia ENG

Reviewers

Name Organisation

Aidan O Mahony DELL

Peter Forgacs LAKE

Oleksandr Chepizhko LAKE

Guangyuan Piao DELL

Alessio Chellini MEF

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 5 of 47

Table of Contents

Executive Summary ...9

1 Introduction ... 10

1.1 Script Development: The Art of Simplicity and Efficiency .. 10

1.2 Microservices Development: Architecting for Scalability and Resilience 10

1.3 The Synergy of Script and Microservices Development .. 11

1.4 Navigating the Landscape: Challenges and Best Practices 11

1.5 Structure of the Deliverable .. 11

2 Distributed Knowledge Graph State of the art .. 12

2.1 Preamble .. 12

2.2 Fundamental Concepts .. 13

2.3 Graph Databases ... 15

3 Intermediate Script and Microservice Software for Novel Metadata Fabric 16

3.1 Schema .. 16

3.1.1 MEF use case ... 16

3.1.2 Dell use case .. 17

3.1.3 SAP use case ... 17

3.2 Implemented Scripts & Microservices ... 18

3.2.1 Metadata service ... 18

3.2.2 Prediction service .. 18

3.2.3 Data Storage Service .. 18

3.2.4 Trade-off Service ... 18

3.2.5 DKG Management Operations .. 18

3.3 Resource, Properties, Literals: Graphical, Programmatical and RDF/XML

representation ... 19

3.4 Access Information included in a Model ... 21

3.4.1 Operations on Models ... 21

3.5 Designing a Microservice ... 22

3.6 Prediction Microservice .. 24

3.7 Data Storage Service ... 32

3.8 Metadata Services ... 37

3.9 IceStream Software Release Description ... 39

4 Future Work .. 43

5 Conclusion .. 45

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 6 of 47

List of Figures

Figure 1 RDF example ... 14
Figure 2 JSON-LD example. .. 14
Figure 3 Graphical representation of a simple RDF model. .. 19
Figure 4 JAVA representation of a simple RDF model. ... 20
Figure 5 XML representation of a simple RDF model. .. 20
Figure 6 Retrieve statements.. 21
Figure 7 Multiple graphs union operation. ... 22
Figure 8 Example of forecasting results with 95% confidence intervals. 28
Figure 9 HBNN architecture.. 29
Figure 10 Code snippet of the Fuseki Communicator class in Python. 39
Figure 11 SBOM snippet for IceStream software .. 40
Figure 12 IceStream Software Release .. 40
Figure 13 IceStream Deployment Script Part 1 ... 41
Figure 14 IceStream Deployment Script Part 2 ... 42

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 7 of 47

List of Tables

Table 1 Graph-based DB. ... 15
Table 2 CPU and Memory demand prediction statistics. ... 31

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 8 of 47

List of Terms and Abbreviations

Abbreviation Description

ARIMA AutoRegressive Integrated Moving Average

AWS Amazon Web Services

BNN Bayesian Neural Networks

DKG Distributed Knowledge Graph

DSS Data Storage Service

DTW Dynamic Time Warping

HBNN Hybrid Bayesian Neural Networks

KG Knowledge Graph

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

OM Ontology of unites of Measure

OWL Web Ontology Language

PCA Principal Component Analysis

QoS Quality of Service

RDF Resource Description Framework

SHACL Shapes Constraint Language

SOM Self-Organizing Maps

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

VRAE Variational Recurrent Auto-Encoder

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 9 of 47

Executive Summary

In the realm of software development, GLACIATION addresses the critical need for

streamlined and efficient approaches to script and microservices development. This innovative

platform serves as a comprehensive solution specifically designed to empower developers in

creating agile, scalable, and resilient software applications, aligning precisely with the

objectives outlined in our deliverable.

GLACIATION, as a privacy-preserving data analytics platform, strategically combines robust

scripting capabilities with a microservices-first approach. This integration empowers

development teams to construct resilient, scalable, and agile software solutions in the

continually evolving digital landscape, thereby serving as a transformative force to navigate

the challenges inherent in our deliverable's objectives.

GLACIATION's Core Mission:

At the core of GLACIATION's mission is the establishment of a resilient, scalable, and agile

framework tailored for modern computing. Scripts and microservices play pivotal roles as

linchpins in achieving this mission. Through process automation, power consumption

optimization, and facilitation of resource scaling, they fortify the foundation of the platform,

aligning with the objectives outlined in our deliverable.

Key Functionalities of Scripts and Microservices:

In this deliverable we describe the intermediate software release of the script and

microservices developed to enable the Novel Metadata Fabric, codenamed “IceStream”, which

serves as the backbone of the GLACIATION platform. This Novel Metadata Fabric essentially

is made up of a Distributed Knowledge Graph (DKG), and required microservices such as the

prediction service, meta-data service, data storage service and others.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 10 of 47

1 Introduction

In the ever-evolving landscape of software engineering, two paradigms have risen to

prominence, revolutionizing the way we conceive, design, and deploy applications: Script and

Microservices Development. In a world where speed, flexibility, and scalability are paramount,

these approaches stand as beacons of innovation, providing developers with the tools to

navigate the complexities of modern software architecture.

We underscore the pivotal role played by scripts and microservices as the backbone of

IceStream, a novel metadata fabric to be created in the project. They are not mere

components; they are the architects of efficiency, scalability, and agility within our Novel

Metadata Fabric. As IceStream evolves, scripts and microservices stand as the catalysts

propelling its capabilities, ensuring that our users experience not just a metadata fabric, but a

dynamic, responsive, and finely-tuned ecosystem driven by innovation and precision.

At its core, IceStream is not just a repository of metadata; it is an intricate web woven by the

seamless integration of scripts and microservices. These dynamic components are

purposefully crafted to be the driving force, the powerhouse that breathes life into IceStream.

1.1 Script Development: The Art of Simplicity and

Efficiency

Script development represents a paradigm shift in the traditional software development

process. Rooted in simplicity, scripts are lightweight, highly readable, and execute

sequentially, making them ideal for automating tasks, performing rapid prototyping, and

enhancing the efficiency of development workflows. Whether in the realm of web development,

system administration, or data analysis, scripts empower developers to wield the power of

automation, reducing manual intervention and accelerating the pace of innovation.

At its core, script development embodies the philosophy of "code as glue," seamlessly

connecting disparate components and systems. The ability to swiftly translate ideas into

functional code fosters a culture of experimentation and iteration. As developers embrace the

elegance of scripting languages, they discover a dynamic toolbox that transcends traditional

programming boundaries, offering a pragmatic solution for solving complex problems with

minimal overhead.

1.2 Microservices Development: Architecting for

Scalability and Resilience

In tandem with the rise of script development, Microservices architecture has emerged as a

transformative force in application design. Departing from monolithic structures, Microservices

break down applications into modular, independent services, each responsible for a specific

business capability. This architectural paradigm empowers organizations to build, deploy, and

scale applications with unparalleled agility and efficiency.

The benefits of Microservices development are manifold. Scalability becomes inherent as

services can be independently deployed and scaled horizontally to meet varying demand. Fault

isolation and resilience are heightened, ensuring that the failure of one service does not

compromise the entire system. Additionally, Microservices facilitate continuous integration and

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 11 of 47

deployment, enabling organizations to deliver updates and features at a pace that aligns with

the speed of business requirements.

1.3 The Synergy of Script and Microservices Development

While script and Microservices development may seem distinct, their synergy is a potent force

in modern software engineering. Scripts play a pivotal role in automating the deployment,

monitoring, and management of Microservices. They become the glue that orchestrates the

seamless interaction between services, streamlining development workflows and enhancing

the efficiency of DevOps practices.

This integration fosters a holistic approach to software development, where the nimbleness of

scripts meets the scalability of Microservices. Developers find themselves equipped with a

comprehensive toolkit, enabling them to rapidly prototype ideas, automate repetitive tasks, and

architect distributed, resilient systems that can evolve alongside the ever-changing demands

of the digital landscape.

1.4 Navigating the Landscape: Challenges and Best

Practices

As we delve into the realms of script and Microservices development, it is essential to

acknowledge the challenges that come with embracing these paradigms. From managing the

complexity of distributed systems to ensuring the security of automated scripts, developers

must navigate a landscape that demands continuous learning and adaptation.

1.5 Structure of the Deliverable

This document reports on the work done in Work Package 6 “Edge-Core-Cloud Platform” which

was carried out from month 8 (May ’23) to month 14 (November ’23) of the project, and is

aligned to T6.2 “Script and Microservices Software - Intermediate”. Work Package 6 is

organized in 3 tasks and there is a chapter dedicated to each of the tasks, after a short

introduction in Chapter 1.

Chapter 2 describes the section “Distributed Knowledge Graph State of the art”. This section

delves into the essence of a Distributed Knowledge Graph, elucidating its fundamental

concepts, the data models employed for organizing knowledge, and the key technologies

instrumental in its implementation.

Chapter 3 describes the section “Intermediate Script and Microservice Software for Novel

Metadata Fabric”. This project focuses on developing intermediate-level scripts and

microservices software designed to enhance the functionality of a novel metadata fabric. The

aim is to create a sophisticated and responsive infrastructure, referred to as IceStream, which

spans from the edge to the cloud. These intermediate scripts and microservices play a pivotal

role in optimizing the operations of the metadata fabric, contributing to the overall efficiency

and adaptability of the system.

Chapter 4 describes the section “Future Work”. In this section, future work is mentioned. In

short, these are: Metadata Service, Data Processing and Monitoring Service, Replica Service,

Prediction Service, Data Storage Service and Trade-off Service.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 12 of 47

2 Distributed Knowledge Graph State of the art

GLACIATION aims to create a novel metadata fabric, called IceStream in the project, that will

cover all levels of the continuum, from the edge to the cloud. The primary aim of the project is

to reduce energy consumption by using artificial intelligence to enforce minimal data movement

operations using the fabric.

The Distributed Knowledge Graph is the foundation of this system as it offers a real-time

perspective of relevant data distributed across the network. It collects and organises

information about the cluster, resource usage and application status. This provides a

comprehensive and global view, helping to make informed decisions to optimise resource

allocation in line with changing data requirements and use cases. This approach ensures that

the knowledge graph, which is distributed, dynamic and adaptive, is not just a static

construction but a responsive, living entity supported by functions and microservices that are

further described in this deliverable.

This section will explain what a Distributed Knowledge Graph is, its fundamental concepts,

data models used to organise the knowledge and the principal technologies that implement it.

2.1 Preamble

The DKG represents a paradigm in the realm of knowledge representation and data

management. DKG provides a distributed, interconnected framework for storing, querying, and

inferring knowledge, making it a crucial asset for applications where distributed data and

microservices play a central role.

Before going in deep of this concept, it is important, firstly, to understand what a Knowledge

Graph is. A Knowledge Graph is defined by Hogan in [HB21] as a graph of data intended to

accumulate and convey knowledge of the real world, whose nodes represent entities of interest

and whose edges represent potentially different relations between these entities. Data graph

conforms to a graph-based data model, which may be a directed edge-labelled graph, a

heterogeneous graph, a property graph, and so on.

Knowledge graphs are similar to specialized databases that collect information from various

sources on diverse subjects. This amalgamation of data is like a melting pot, but what sets

knowledge graphs apart is their ability to scrutinise data for hidden similarities and present it

in one place. As a result, they earn their name 'knowledge' graphs. Thus, it is essentially a

chart that consolidates data and connections from various sources that were previously

separate.

Defining knowledge graphs can be challenging due to the general approach to schemas that

describe data. If schemas exist, they may be ad-hoc and unenforced, leading to data that feels

half-structured. This is not a reflection of poor quality or problematic incompleteness, but rather

a critical distinguishing feature of knowledge graphs, giving them more flexibility.

There are new challenges for research and development including dealing with the scale and

the degree of distribution, while monitoring and maintaining data quality and privacy. Initially,

knowledge graphs were predominantly centralized, monolithic structures. However, as the

need for distributed, scalable, and responsive systems grew, there arose a necessity to

decentralize knowledge graphs. This shift in focus led to the emergence of Distributed

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 13 of 47

Knowledge Graphs, where the knowledge is distributed across multiple nodes or locations,

enabling greater scalability and fault tolerance.

In recent years, this topic has become increasingly relevant in the IT sector and the European

Cooperation in Science and Technology (COST) agency [CO23] is at the forefront of this work.

Among the various campaigns, there is one dedicated to DKGs, for which the mission

statement is quoted: Distributed Knowledge Graphs is a COST Action, i.e., a research and

innovation network to connect research initiatives around Europe. A COST Action supports

activities such as short-term scientific missions, workshops, and training schools. Our specific

Action is centred around the topic of Distributed Knowledge Graphs, i.e., Knowledge Graphs

that are published in a decentralised fashion, thus forming a distributed system. Essentially,

the main aim of the Action is therefore to create a research community for deployable

Distributed Knowledge Graph technologies that are standards-based, and open, embrace the

FAIR principles, allow for access control and privacy protection, and enable the decentralised

publishing of high-quality data.

2.2 Fundamental Concepts

In a DKG, the fundamental building blocks include nodes, edges, properties, and schema.

Nodes represent entities, concepts, or instances of knowledge, while edges establish

relationships between nodes. Properties (or labels) are used to assign attributes or metadata

to nodes and relationships. In the end, the schema specifies the structure and semantics of

the graph, defining the types of nodes, edges, and properties that can exist.

Distributed Knowledge Graphs could employ various data models and representation

techniques to efficiently organize, represent, and query knowledge in distributed environments.

Efforts to standardize its representation are ongoing. RDF (Resource Description Framework),

OWL (Web Ontology Language), SPARQL (a query language for RDF data), and the recent

JSON-LD are some of the key standards used for knowledge graphs:

• RDF is a framework for modelling and exchanging data, it provides a set of

specifications for representing data in the form of triples, which consist of a subject, a

predicate, and an object. RDF can be used to create ontologies and to represent

knowledge in a graph model.

• OWL is a language for creating ontologies. It is based on RDF and provides a more

expressive way of describing concepts and relationships than RDF. OWL includes a

set of constructs for representing classes, properties, and relationships between

classes.

• SPARQL is a query language for RDF. SPARQL provides the functionality to query

sets of RDF triples and also a communication protocol that allows queries to be made

in a web environment.

• JSON-LD (JSON for Linking Data): JSON-LD is a data format for representing Linked

Data in JSON format (while RDF is an XML-like format). It is designed for simplicity

and ease of integration, making it suitable for scenarios where data interchange and

interoperability across web-based sources are important. The exact same

representation done in RDF are now displayed in JSON-LD:

A difference in syntax between RDF and JSON-LD could be visualized in these two examples,

used for the representation of a person and its relevant information as the birth date, name

and spouse.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 14 of 47

Figure 1 RDF example

Figure 2 JSON-LD example.

While JSON-LD is very prominent and compact, RDF is the most mature standard for

describing complex data and complex interrelationships for semantic data that do not fit into

traditional relational database rows and columns or simple XML. It is also the standard that

allows for data exchange of semantic graph databases that support contextual and conceptual

meaning. RDF has features that dramatically simplify data merging even if the underlying

schemas differ. Specifically, it supports the evolution of schemas over time without requiring

all the data consumers to be changed – a powerful construct for today’s fast pace of change.

This flexibility is another advantage when dealing with complex data, where legacy systems

and datasets are merged or brought together with new, and rapidly changing data sources. If

you have complex data, RDF is an excellent, extremely robust data representation ‘staging’

format for data import and export.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 15 of 47

2.3 Graph Databases

Here we present a table of the main open source as well as non-free graph databases in

circulation, used also for the implementation of knowledge graphs.

Table 1 Graph-based DB.

Framework Description

Apache Jena Is an open-source Java framework for building Semantic Web and
Linked Data applications. It provides a versatile and extensible
platform for creating, storing, and querying knowledge graphs
based on the RDF data model. Jena includes a triple store (TDB)
for efficient RDF data storage and supports SPARQL, a query
language for querying RDF data.

GraphDB Developed by Ontotext, is a high-performance, semantic graph

database designed for managing RDF data and knowledge

graphs. It is known for its robust support for SPARQL querying and

reasoning capabilities. GraphDB also offers features for semantic

annotation, full-text search, and versioning, making it suitable for

complex knowledge graph projects.

Neo4j Is a leading graph database that specializes in property graph data

modelling. It is widely used for building knowledge graphs and

offers a powerful graph-based data model that includes nodes,

relationships, and properties. Neo4j provides advanced querying,

traversal, and graph analytics capabilities, making it well-suited for

applications that require real-time graph processing.

Amazon Neptune Is a managed graph database service provided by Amazon Web

Services (AWS). It supports both property graph and RDF data

models, making it versatile for various types of knowledge graphs.

Neptune offers high availability, scalability, and ease of

deployment in the cloud, making it a popular choice for building

and managing knowledge graphs at scale.

Stardog Is a semantic graph database designed for managing RDF data
and creating knowledge graphs. It offers powerful reasoning
capabilities, which means it can infer new information based on
existing data. Stardog is suitable for applications that require
advanced semantic reasoning and knowledge representation.

Next sections will provide more information related to script and microservice at support of the

generation and management of DKG.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 16 of 47

3 Intermediate Script and Microservice Software for

Novel Metadata Fabric

3.1 Schema

A Knowledge Graph (KG) schema serves as the foundational blueprint for organizing and

structuring information within a knowledge graph. It defines the essential components,

including entities, properties, relationships, and their interconnections, to represent the

interconnected knowledge of a specific domain. This schema acts as a guide for building and

querying the knowledge graph, ensuring a systematic and coherent representation of

information. By outlining the structure and semantics of data, a knowledge graph schema

facilitates effective data integration, retrieval, and analysis, empowering applications ranging

from semantic search to machine learning [ZM20].

A schema, providing a high-level framework as a guide, dictates the structure and semantics

of a KG. Domain-specific KGs often have manually defined schemas with limited scale. Unlike

traditional KGs with fixed schemas, open-domain KGs like Wikidata1 and Freebase [BEP+08]

lack a unified structure, with entity types evolving over time. Extracting KG schemas (or

ontologies) has been explored for refining, completing, or adapting ontologies to new KGs,

employing methods like ontology learning or taxonomy extraction. While traditional approaches

involve manual efforts, recent solutions, including graph embedding techniques, address the

schema modelling problem in fact-level KGs under hyper-relational representations, deviating

from the assumption of a predefined ontology-level graph. [LDY+23]

In our specific scenario, the schema of our KG (to be more precise, Distributed Knowledge

Graph - DKG) is deliberately and systematically crafted through manual definition, offering a

fixed and unchanging structure. This intentional approach ensures a high level of precision and

control over the representation of entities, properties, and relationships. To navigate this

carefully curated knowledge landscape, it is imperative to accurately identify and acknowledge

the ontologies that underpin our schema, signifying a commitment to clarity and coherence in

our information architecture.

The identification of ontologies and the development of the metadata model constitute ongoing

efforts within GLACIATION's Task 6.1: Technical development of metadata model for data-

centric architectures. Initially, the work anticipated in T6.1 would have concluded by now and

integrated into this section. However, due to valid considerations, the task has been extended.

The following ontologies have been identified so far across distinct use cases:

3.1.1 MEF use case

· Human Resources Management Ontology

(https://oeg.fi.upm.es/index.php/en/ontologies/99-hrmontology/index.html) - A

comprehensive framework serving as a standardized vocabulary for expressing job

postings and job seeker resumes. Developed using the NeOn Methodology and ontology

1 https://www.wikidata.org/

https://oeg.fi.upm.es/index.php/en/ontologies/99-hrmontology/index.html
https://www.wikidata.org/

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 17 of 47

engineering tools, it consists of thirteen modular components, covering areas such as

Competence, Compensation, and Education.

· NoiPA Ontology (https://sparql-noipa.mef.gov.it/endpoint/download/owl/NoiPA.owl) -

Specifically tailored for the MEF use case, the NoiPA Ontology addresses aspects related

to the management of public employee payroll data. It is utilized in the MEF context to

enhance data interoperability and understanding.

3.1.2 Dell use case

· Foundational ontologies - Essential ontologies providing a conceptual foundation for

knowledge representation. They include the Time Ontology in OWL, defining temporal

concepts, and the Vocabulary of Interlinked Datasets (VoID) for describing linked

datasets.

· Time Ontology in OWL (https://www.w3.org/TR/owl-time/)

· Vocabulary of Interlinked Datasets (https://www.w3.org/TR/void/)

· KG ontologies - Key ontologies supporting the representation of knowledge graphs. This

category includes the Resource Description Framework (RDF), a foundational language

for expressing triples in the Semantic Web.

· Resource Description Framework (RDF) (https://www.w3.org/TR/rdf11-concepts/)

· Sensor/Telemetry ontologies - Ontologies addressing sensor networks and telemetry

data. Examples include the Semantic Sensor Network Ontology (SSN) for describing

sensors and observations and the Robot ontology for robotic systems.

· Semantic Sensor Network Ontology (https://www.w3.org/TR/vocab-ssn/)

· Robot ontology [BCM17]

· Data representation ontologies - Ontologies focusing on the representation of data.

Notable examples are the Data Catalog Vocabulary (DCAT) for describing datasets and

the RDF Data Cube Vocabulary for representing multi-dimensional data.

· Data Catalog Vocabulary (https://www.w3.org/TR/vocab-dcat/)

· RDF Data Cube Vocabulary (https://www.w3.org/TR/vocab-data-cube/)

· Workload representation ontologies - Ontologies related to representing workloads,

services, and APIs. This category includes Lightweight Semantic Descriptions for

Services on the Web (WSMO-Lite), OWL-S for semantic web services, and the OpenAPI

Specification for defining RESTful APIs.

· Lightweight Semantic Descriptions for Services on the Web

(https://www.w3.org/Submission/WSMO-Lite/)

· OWL-S: Semantic Markup for Web Services (https://www.w3.org/Submission/OWL-

S/)

· OpenAPI Specification (https://swagger.io/specification/)

3.1.3 SAP use case

· Data Privacy Vocabulary (https://www.w3.org/community/dpvcg/2022/12/05/dpv-v1-

release/) - This vocabulary addresses data privacy concerns, providing a standardized

way to express terms and concepts related to data protection. It supports SAP in ensuring

compliance with data privacy regulations.

After identifying the ontologies, the next step in the schema definition involves the

establishment of relationships and mappings between the identified ontologies. This process

https://sparql-noipa.mef.gov.it/endpoint/download/owl/NoiPA.owl
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/void/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/vocab-data-cube/
https://www.w3.org/Submission/WSMO-Lite/
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
https://swagger.io/specification/
https://www.w3.org/community/dpvcg/2022/12/05/dpv-v1-release/
https://www.w3.org/community/dpvcg/2022/12/05/dpv-v1-release/

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 18 of 47

is crucial for integrating and aligning diverse ontological structures to ensure a coherent and

interoperable knowledge representation.

3.2 Implemented Scripts & Microservices

3.2.1 Metadata service

Is in the very early stage of development. We determine what will exactly constitute the

metadata and which functions will be included to manipulate it. The usability of Python-based

software for this purpose is discussed.

3.2.2 Prediction service

Provides predictions for time-series data on the platform. The prediction service is

implemented using data on energy consumption. SPARQL queries are used to retrieve such

data from a snippet of knowledge graph, which is used as illustration of implementation in each

example. The forecasting is done using different methods such as AutoARIMA, Hybrid

Bayesian Neural Networks, DeepAR, Temporal Fusion Transformer. Different methods are

used to determine the conditions under which each of them shows the best performance to

use optimized solutions in the future.

3.2.3 Data Storage Service

Main focus of the development now includes efforts to integrate SHACL (Shapes Constraint

Language) validation within the data storage workflow. SHACL is a language for validating

RDF (Resource Description Framework) graphs against a set of conditions.

3.2.4 Trade-off Service

The trade-off service will interact with the DKG to provide the workload placement with what it

needs in terms of metadata for latency, resource usage, energy, privacy, data locality

requirements and security. Its definition is in progress aligning with other technical

components. Once the design is complete, development begins.

3.2.5 DKG Management Operations

This paragraph examines the essential processes required to build and maintain a knowledge

graph model. We focus mainly on the creation, reading, writing, and algebraic operations

(union, difference, intersection) in RDF. The method of managing the graph will be

demonstrated here in a programmatic manner, with a focus on the Apache Jena framework,

the core tool utilized in our project.

The goal of this mission is to provide a thorough understanding of the underlying processes

while simplifying the complexity involved in creating RDF models through programming. Also,

we include concise examples that show how the models are built directly in RDF/XML format

as well, showcasing the adaptability and versatility of this data representation and of the

Apache Jena tool. Although this presentation focuses on Apache Jena, it's crucial to remember

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 19 of 47

that the basic functionality for managing a Distributed Knowledge Graph is the same for many

graph database systems. As one considers building an RDF model, it becomes evident that

the ideas mentioned above go beyond just one framework. Because these functions are widely

used, they may be easily applied in a variety of graph database setups, which supports the

flexible nature of knowledge graph management features.

3.3 Resource, Properties, Literals: Graphical,

Programmatical and RDF/XML representation

Considered a major standard, the Resource Description Framework (RDF) is formally

acknowledged as a W3C recommendation. RDF is fundamentally a basis for resource

descriptions. A Resource is any entity we want to represent, which is uniquely recognized by

a URI and represented in the graph as an ellipse. A URI is a sequence of characters that

identifies a logical (abstract) or physical resource; it uniquely distinguishes one resource from

another.

Resources in the RDF paradigm is linked to properties, which are represented by arcs labelled

with the name of a certain property. Values/Literals are then connected to these attributes.

The next example in Figure 3 Graphical representation of a simple RDF model., shows the

representation of a person Full Name, where the value is represented as a text literal (a string

enclosed in a rectangle).

Figure 3 Graphical representation of a simple RDF model.

RDF graphs, such as the one above, can be created and altered using the Jena Java API.

Specialized object classes designed for the representation of fundamental elements including

graphs, resources, attributes, and literals are included in the tool and those are the main bread

for developers that want to interact with and change the RDF structure. These interfaces are

also referred to, for simplicity, as Resource, Property, and Literal. Rather, the term "model"

refers to a graph, which is represented by the Model interface. Jena effectively makes the DKG

navigation, query, and transformation possible through the Model interface. The same

graphical example above could be represented programmatically as in Figure 4.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 20 of 47

Figure 4 JAVA representation of a simple RDF model.

Jena has methods for reading and writing RDF as XML. These can be used to save an RDF

model to a file and later read it back in again. The very similar model created programmatically

above, is now showed here in XML, with the addition of the resource Jhon Smith having a Full

Name and its division between family name and given name.

Figure 5 XML representation of a simple RDF model.

The syntax used in Figure 5 represents:

• The <rdf:Description> element describes the resource whose URI is

http://somewhere/JohnSmith.

• The <vcard:FN> element describes a property of the resource.

• The value of the property is the literal "John Smith".

• The <vcard:N> element is a resource. In this case the resource is represented by a

relative URI reference.

http://somewhere/JohnSmith

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 21 of 47

The three representations listed above are the current methods for creating a knowledge

graph.

3.4 Access Information included in a Model

In an RDF model, every arc is referred to as a statement. A fact regarding a resource is

asserted in each statement. A statement is sometimes called a triple because it has three

parts:

• The subject is the resource from which the arc originates.

• The predicate is the property that labels the arc.

• The object is the resource or literal to which the arc points.

This format enables knowledge to be represented in a machine-readable way and with this

precise representation, semantic data can be queried and reasoned about without ambiguity.

To make an example, a triple could be "John is tall 45 cm", which comprises a subject "John",

a predicate ("is tall"), and an object ("45 cm").

In the end an RDF model is represented as a set of statements. The Jena model interface

defines a listStatements() method which returns an StmtIterator, a subtype of Java's Iterator

over all the statements in a Model. StmtIterator has a method nextStatement() which returns

the next statement from the iterator. Finally, from the Statement you could use methods to

access the subject, the predicate and the object of a statement, as visualized in Figure 6.

Figure 6 Retrieve statements.

Above we are making use of listStatements() which lists all the statements in a model, is

perhaps the longest way of querying a model and its use is not recommended on very large

Models. Fortunately, is possible to search based on specific property, querying it. The core

Jena API supports only a limited query primitive, but more powerful query facilities are applied

thanks to SPARQL that is not described here.

3.4.1 Operations on Models

Jena expands its capabilities by providing three fundamental model manipulation procedures.

These operations, like set operations, include union, intersection, and difference.

Jena's union approach, which reflects the algebraic union operation, facilitates the smooth

merging of two models. When the two models have identical nodes, they will be combined to

form a single object that unifies both. Properties, the edges, encounters the same destiny since

the union will eliminate superfluity and provides a concise representation in a single merged

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 22 of 47

model. Figure 7 Multiple graphs union operation.shows how to read the two models and how

to merge them in one.

Figure 7 Multiple graphs union operation.

The intersection and difference of the models can be calculated in a similar way using the

methods .intersection(Model) and .difference(Model).

More information could be retrieved in the Apache Jena Documentation website [Jen15].

3.5 Designing a Microservice

Developing a microservice for script and microservices development involves creating a

service that facilitates the execution of scripts and the deployment of microservices. Below are

some important considerations and steps to take when designing and implementing such a

microservice:

Define Requirements:

Clearly define the requirements for your microservice. What scripting languages do you want

to support? What capabilities should it have for microservices development?

Choose Technology Stack:

Select a technology stack suitable for your microservice. Consider the programming language,

framework, and any additional tools you may need.

Script Execution:

Implement the ability to execute scripts. Depending on your requirements, you might need to

support various scripting languages (Python, JavaScript, etc.).

Input and Output Handling:

Design a mechanism to handle input parameters for scripts and capture their output. This may

include specifying input parameters via an API or configuration file and capturing script output

for further processing.

Error Handling:

Implement robust error handling to deal with issues that may arise during script execution. This

includes catching syntax errors, runtime errors, and providing meaningful error messages.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 23 of 47

Security:

Ensure security measures are in place. Limit script access to necessary resources, and

consider implementing features such as sandboxing to prevent malicious activities.

Microservices Deployment:

If your microservice is also responsible for deploying other microservices, implement features

for packaging, deploying, and managing microservices. This might involve containerization

(using Docker) or other deployment strategies.

Version Control:

Consider incorporating version control features for scripts and microservices to track changes,

rollback, and manage updates effectively.

API Design:

Design a clear and consistent API for your microservice. This API should cover script

execution, microservices deployment, and any other functionalities your service provides.

Documentation:

Create comprehensive documentation for your microservice. Include details on how to use the

API, sample requests and responses, and any other relevant information.

Testing:

Implement thorough testing, including unit tests, integration tests, and end-to-end tests, to

ensure the reliability and correctness of your microservice.

Logging and Monitoring:

Integrate logging to capture relevant information during script execution and microservices

deployment. Implement monitoring to track the health and performance of your microservice.

Scalability:

Design your microservice to be scalable. Consider factors such as load balancing and the

ability to scale horizontally to handle increased demand.

Continuous Integration/Continuous Deployment (CI/CD):

Set up CI/CD pipelines to automate the testing and deployment process, ensuring a smooth

and efficient development lifecycle.

User Authentication and Authorization:

Implement user authentication and authorization mechanisms to control access to your

microservice.

Compliance and Governance:

If applicable, ensure your microservice complies with any industry or organizational

governance standards.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 24 of 47

3.6 Prediction Microservice

The prediction microservice aims to adaptively provide forecasting functionality for time series

data on the GLACIATION platform such as the ones related to energy consumption or cloud

workload. It is particularly useful for providing insights into the energy consumption or workload

trends of the platform and can be used for other downstream tasks, such as resource

allocation. Formally, the forecasting problem can be described as follows:

𝑦𝑡+1̂ = 𝑓(𝑦1,  𝑦2,  𝑦3,   … ,  𝑦𝑡),

where 𝑦𝑡+1̂ refers to the predicted value at time step 𝑡 + 1 based on previous 𝑡 observations

in the time series data, and 𝑓(⋅) indicates a forecasting method to be used to map those

historical observations to the predicted value [JA18].

The set of values that the random variable 𝑦𝑡+1 could take, along with their relative

probabilities, is known as the probability distribution of 𝑦𝑡+1 given those previous observations.

In forecasting, we refer to this distribution as the forecast distribution. This distribution with its

confidence intervals is particularly useful in certain applications such as workload prediction

for resource management in cloud computing, where overpredicting resource demand is more

desirable than underpredicting the demand, as the latter can have a critical impact on Quality

of Service (QoS).

In the following, we describe the input, output, a set of methods investigated and implemented,

as well as key observations of the prediction microservice so far. At the end, we provide a

summary and future work for this microservice.

Input

The input of the service should be an array of data representing a time series such as the

historical energy consumption data or resource utilization history.

This can be obtained from DKG using a SPARQL query based on the metadata model defined

in Task 6.1 in the future. For illustration purposes, we use a DKG snippet as an example. The

snippet utilizes the PROV ontology [LSM+13] and the ontology of units of measure (OM)

[RAT13] to provide relevant metadata, including the unit of a measurement, timestamp, and

the measurement (value) itself.

In particular, the PROV ontology provides a set of classes, properties, and restrictions that can

be used to represent and interchange provenance information generated in different systems

and under different contexts. The OM ontology includes classes, instances, and properties that

represent different concepts used for defining and using measures and units.

For instance, the snippet below shows a set of measurements in megawatt with respect to an

energy consumption time series data aggregated at hourly intervals2.

2 https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption/

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 25 of 47

@prefix om: <http://www.ontology-of-units-of-

measure.org/resource/om-2/> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

[] a om:Measure,

 prov:Entity ;

 om:hasNumericalValue "1784.0"^^xsd:float ;

 om:hasUnit om:megawatt ;

 prov:generatedAtTime "2010-11-26T15:00:00"^^xsd:dateTime .

[] a om:Measure,

 prov:Entity ;

 om:hasNumericalValue "2694.0"^^xsd:float ;

 om:hasUnit om:megawatt ;

 prov:generatedAtTime "2009-01-21T13:00:00"^^xsd:dateTime .

…

…

Here, each data point or measurement in a time series is an instance of both om:Measure

and prov:Entity classes, containing relevant information such as the value, unit, and

generated time of the measurement.

Given such a time series data in DKG, we can use a SPARQL query to retrieve the data and

use it as an input to the prediction service to forecast the next value. For instance, the following

SPARQL query shows an example of obtaining the set of measurements stored in the above-

mentioned DKG ordered by the generated time of each measurement. The retrieved set of

measurements can be provided as an input to a forecasting method implemented within the

prediction microservice.

 query = """

 prefix om: <http://www.ontology-of-units-of-

measure.org/resource/om-2/>

 prefix prov: <http://www.w3.org/ns/prov#>

 prefix xsd: <http://www.w3.org/2001/XMLSchema#>

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 26 of 47

 SELECT ?measure

 WHERE {

 ?subject rdf:type om:Measure .

 ?subject om:hasNumericalValue ?measure .

 ?subject prov:generatedAtTime ?date .

 }

 ORDER BY ASC(?date)

 """

Output

The primary output of the prediction microservice is the predicted value for the next time step

based on the given time series data as input. In addition to the predicted value, the output also

includes other useful metadata regarding the trained forecasting model and the prediction. This

information offers an overview of the trained model, the evaluation results of the model, and

the upper and lower bounds of the prediction using the confidence intervals.

More specifically, the metadata includes key elements such as:

• history: the input time series for training a forecasting model

• n_periods: the number of time steps to be forecasted

• evaluate: the number of time steps of the input to be used as testing examples for

evaluation

• model: information about the trained forecasting model

• eval_results: the evaluation results in terms of Mean Absolute Percentage Error

(MAPE) and Mean Squared Error (MSE)

• prediction: predicted value of the next time step

• upper_bound: the upper bound of 95% confidence interval of the prediction

• lower_bound: the lower bound of 95% confidence interval of the prediction

• fit_predict_time: the time spent on training and prediction of the model

• test_pred: the predicted values for testing examples

• test_upper_bounds: the upper bounds of test predictions

• test_lower_bounds: the lower bounds of test predictions

Without loss of generality, the output in a JSON format is illustrated as below.

{

 "history": [2219, 2096, …],

 "n_periods": 1,

 "evaluate": 10,

 "dump_path": "/forecasting/20231024-113258216461",

 "model": " ARIMA(3,1,4)(0,0,0)[0] intercept",

 "test_upper_bounds": [2661.3216631203404, …],

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 27 of 47

 "test_lower_bounds": [2485.2606919759073, …],

 "test_pred": [2573.291177548124, …],

 "test": [2576, …],

 "eval_results": {

 "mape": 0.01,

 "mse": 1132.7

 },

 "prediction": 1879.0052656737,

 "upper_bound": 1967.0357035331722,

 "lower_bound": 1790.9748278142279,

 "fit_predict_time": 106.79

}

In addition to the metadata of the output, a visualization can provide an intuitive insight on the

performance of a trained forecasting model for a given input. In this regard, the microservice

also provides auxiliary plots, such as an evaluation plot illustrating the testing examples and

the forecasting results. For example, the testing examples can be the last 10 examples in the

input data, and they are used to evaluate a forecasting model trained based on the input data,

excluding those 10 examples.

Figure 8 below shows an example of such plot. In the plot, the set of “x” indicates the last 10

examples in the input time series data, while the solid line represents the prediction of the

forecasting model. In addition, the shaded area of the plot represents the 95% confidence

intervals, which are based on the upper and lower bounds of the prediction.

From the figure, we can observe that the trained model predicts the set of testing examples

reasonably well, and all those examples fall within the 95% confidence intervals of the

prediction. On one hand, those useful insights can provide confidence in our prediction

microservice. On the other hand, we can also diagnose and improve a model in the cases

where it does not perform well.

One thing to note is that those examples used for testing can also be used for updating the

model after evaluation. That is, the prediction can still incorporate all the examples from the

input data.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 28 of 47

Figure 8 Example of forecasting results with 95% confidence intervals.

Methods

AutoARIMA [Smi17]: ARIMA, which stands for AutoRegressive Integrated Moving Average,

is a well-established time series forecasting model. Due to its simplicity and powerfulness, it

has been widely adopted in a wide range of applications such as predicting stock prices

[AAA14], cloud resource [CMR14], and temperature trends [LD20].

ARIMA combines three key components:

• AutoRegressive (AR): The AR component models the relationship between a data point

and its lagged (previous) values. The intuition behind this component is that the current

data point depends on previous ones.

• Integrated (I): This component represents the number of differences required to make

the time series stationary. Stationary means that the statistical properties of the data

such as mean and variance, do not change over time.

• Moving Average (MA): The MA component models the relationship between the current

data point and past white noise error terms. It aims to capture the short-term

fluctuations or noise in the data.

AutoARIMA, as the name suggests, aims to automatically selecting best parameters in AR, I

and MA components to find the best-performing ARIMA model for a given time series data.

HBNN (Hybrid Bayesian Neural Networks) [RVP+22]: A Bayesian Neural Network (BNN) is a

type of neural network in which the weights are modelled as probabilistic variables and

optimized via Bayes-by-backprop approach [BCK+15]. HBNN is a variation of BNN which

employs a Bayesian approach in its last layer. This variation is made with the consideration of

trade-off between training time and epistemic uncertainty modelling. Epistemic uncertainty

here refers to the uncertainty arising from the limited dataset size or incomplete knowledge of

model parameters [KHH20]. HBNN has been applied in workload prediction tasks in the

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 29 of 47

context of cloud computing [RVP+22, RVP+23a, RVP+23b], and has shown its effectiveness

of capturing the uncertainty of predictions.

The overall model architecture is illustrated in Figure 9 HBNN architecture.The input sequence

is processed by 1-dimensional Convolutional Neural Networks (1DConv), LSTM (Long Short-

Term Memory), and Dense layers, followed by the Bayesian layer [LBH15]. The final dense

layer is a Gaussian distribution layer which contains two neurons representing the mean and

variance of the distribution of the prediction.

Figure 9 HBNN architecture.

DeepAR is a probabilistic forecasting model for time series data introduced by [SFG+20] in

2020. It leverages auto-regressive Recurrent Neural Networks (RNNs) and can be trained on

one or multiple time series produced by the same or similar processes. To generate

probabilistic forecasts, the model learns the parameters of a Gaussian distribution with the

objective of minimizing the log-likelihood function using the Adam optimizer [KB14].

Temporal Fusion Transformer (TFT) [LAL+21] is an attention-based Deep Neural Network

for time series forecasting. The model uses a multi-head attention mechanism to capture the

most relevant segments of the input window for forecasting and utilizes a quantile loss as the

loss function to optimize the network. Furthermore, multiple time series from diverse

distributions have been used together to jointly optimize the network. The output of the network

consists of the seven quantiles of a Gaussian distribution.

Although the accuracy of forecasting the future time series is important, some applications,

such as workload prediction in the context of cloud computing, require a conservative

prediction strategy. Underpredicting future workload can have a critical impact on QoS, which

is critical for customer satisfaction. In our recent study [RVP+23b], we have also compared

three deep learning models such as HBNN, DeepAR, and TFT for workload forecasting in

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 30 of 47

cloud computing, as shown in Table 2. We also utilized five clustering approaches to explore

the selection of similar time series datasets for training. For more details regarding these

clustering approaches, refer to [RVP+23b].

• Random method chooses a set of training datasets randomly without using any

clustering approaches.

• PCA (Principal Component Analysis) [WEG87] reduces the dimension of data into

two with the first two principal components, and then cluster the data using a K-Means

approach.

• VRAE (Variational Recurrent Auto-Encoder) [FA14] is a generative model for

unsupervised learning for time series data in which an encoder is used to reduce the

dataset dimensionality. Afterwards, K-Means clustering is applied to obtain clusters.

• SOM (Self-Organizing Maps) [Koh82] clusters data into a dimensionality-reduced

map where each cell in the map represents a cluster, and the weight vector of a cell is

trained using the data.

• DTW (Dynamic Time Warping) is an algorithm for measuring the similarity between

time series datasets, and the similarities are used for clustering.

The set of metrics with respect to QoS are as follows:

• Success Rate (SR): the percentage of correctly predicted requests, i.e., the

percentage of actual requests that are within the upper bound of the prediction.

• Overprediction (OP): the percentage of overprediction computed as the difference

between the upper bound (UB) of the confidence interval and ground truth for those

predictions which exceed the real demand of resources.

• Underprediction (UP): the percentage of underprediction computed as the difference

between ground truth and the UB of the confidence interval for those predictions which

are below the real demand of resources.

Ideally, a forecasting method should aim to achieve a high success rate while minimizing both

overprediction and underprediction. Nevertheless, there are some trade-offs between these

metrics. In cases with strict QoS requirements, achieving a high success rate is critical, even

if it requires some compromise in terms of overprediction.

Table 2 shows the results of CPU and memory demand prediction regarding SR, OP, and UP,

using 500 datasets for training. A clustering method is applied to choose relevant datasets. We

can observe from the table that the SR values are higher for HBNN compared to DeepAR and

TFT, regardless of clustering method applied. This indicates that the Bayesian layer in HBNN

can effectively capture the epistemic uncertainty associated with predictions, as reflected by

the magnitude of the standard deviation.

In contrast, DeepAR and TFT tend to exhibit overconfidence in their predictions, resulting in

notably lower standard deviation values. For example, with the DTW as the clustering method,

HBNN can achieve 98.25% of SR, while DeepAR and TFT achieve 76.85% and 78.43% of SR

respectively. Regarding the UP metric which relates to the percentage of unmatched requests,

the HBNN method exhibits a notably lower percentage of unmatched requests compared to

the other two methods, making it a more reliable choice for applications that require high QoS.

However, it is worth noting that these benefits of HBNN in terms of higher SR and lower UP

come with a compromise of higher OP.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 31 of 47

In summary, DeepAR and TFT tend to be overconfident in the prediction, while HBNN can

provide a trade-off between accuracy and successful resource requests at the cost of allocating

more resources.

Table 2 CPU and Memory demand prediction statistics.

Required Python Packages

The prediction microservice has been developed using the Python programming language,

along with relevant packages such as pmdarima and Tensorflow [Aba16] for implementing

forecasting methods to be integrated into the service.

The required packages and their versions required for the prediction microservice include, but

are not limited to:

• python 3.9.18

• arch 5.1.0

• keras 2.8.0

• matplotlib 3.8.0

• numpy 1.26.0

• pandas 2.1.1

• talos 1.0.2

• tensorflow 2.8.0

• tensorflow-gpu 2.8.0

• tensorflow-probability 0.14.0

• pmdarima 2.0.3

• scikit-learn 1.3.1

• scipy 1.11.3

• statsmodels 0.14.0

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 32 of 47

Summary

In this subsection, we introduced the prediction microservice with respect to its input, output,

and a set of methods have been investigated. In addition to the prediction, the output of the

service also contains relevant metadata for evaluating, diagnosing, and trouble-shooting the

microservice. Since there is no one-fits-all solution for all time series data, the choice of a

forecasting method to be used for a given time series data should be determined by

considering different criteria. For instance, these criteria can include the performance of the

forecasting model with respect to the time series data, the characteristics of time series data,

and the set of service requirements in the GLACIATION platform and its use cases.

Furthermore, the prediction microservice has been created as a standalone service until the

point in time under discussion. In the future, it will be integrated into the metadata fabric to

enable interaction with the distributed knowledge graph and other services, e.g., retrieving

energy consumption time series data from DKG and providing forecasting results in the user

interface of DKG.

3.7 Data Storage Service

The ongoing development of the Data Storage Service (DSS) includes efforts to integrate

SHACL validation within the data storage workflow. This intermediate release reflects a

snapshot of the continuous development process, with a particular focus on the SHACL

validation component:

SHACL Validation Upon Data Storage

• Triggering Mechanism: The service is exploring methods for the automatic initiation of

SHACL validation when RDF data is uploaded. This feature is in a developmental

stage, with the goal of achieving a balance between performance and precision.

• Progressive SHACL Shapes Library: A preliminary collection of SHACL shapes has

been initiated, serving as the basis for the validation routines. This library is under

progressive elaboration, with plans to incorporate a wider array of shapes in line with

evolving data specifications.

• Dynamic Shape Selection: Work is underway to develop capabilities that allow the DSS

to intelligently determine the relevant SHACL shapes applicable to the uploaded data.

This initiative is aimed at simplifying the validation process for the end-user by

minimizing the manual intervention required.

Use-case for SHACL

SHACL (Shapes Constraint Language) is a language for validating RDF (Resource Description

Framework) graphs against a set of conditions. These conditions are provided as shapes and

other constructs in a SHACL shapes graph. SHACL is used in various contexts and scenarios,

particularly where RDF data needs to be validated for consistency, correctness, and

compliance with certain standards or expectations. Here are some of the use cases for SHACL:

1. Data Quality Assurance:
a. Ensuring data adheres to defined quality criteria before it is used in

applications.
b. Detecting data anomalies, inconsistencies, and missing values.

2. Data Modelling and Ontology Enforcement:
a. Enforcing domain-specific constraints in ontologies.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 33 of 47

b. Validating RDF data against ontology constraints to ensure that the data is a
correct instance of the given ontology.

3. Schema Validation:
a. Checking that RDF data conforms to a schema, similar to XML Schema or

JSON Schema validation.
b. Ensuring that relationships and properties within RDF data are used correctly

according to a schema.
4. Data Integration:

a. Validating integrated data from multiple sources to ensure it meets a common
set of constraints.

b. Helping with data alignment and transformation by highlighting discrepancies.
5. Form Input Validation:

a. Validating user input in web forms that result in RDF data, ensuring that
submitted data conforms to business rules.

6. API Contract Validation:
a. Enforcing constraints on data that is consumed or produced by web services.
b. Validating RDF payloads in RESTful services or SPARQL endpoints.

7. Regulatory Compliance:
a. Checking data against regulatory requirements or industry standards.
b. Using SHACL to demonstrate and ensure compliance with various

regulations.
8. Interoperability Assurance:

a. Ensuring that data shared between systems adheres to agreed-upon shapes,
promoting interoperability.

b. Validating standardized metadata for content like bibliographic records,
scientific data, etc.

9. Knowledge Graph Maintenance:
a. Periodic validation of knowledge graphs to ensure data quality and

consistency over time.
b. Assisting in knowledge graph curation by identifying data that does not meet

certain conditions.
10. Data Publishing:

a. Providing guarantees about the structure and quality of RDF data before it is
published.

b. Ensuring that published datasets meet the standards required by data
consumers.

11. Data Transformation and Mapping:
a. Verifying the results of data transformation processes.
b. Ensuring that data mappings preserve semantic constraints.

12. Ontology Evolution and Versioning:
a. Validating datasets against evolving ontologies.
b. Ensuring backward compatibility of ontologies with existing datasets.

Our use-case for the data storage service is schema validation, data integration, and ontology
enforcement. Future uses which the project will investigate include knowledge graph
maintenance and ontology evolution.

Apache Jena SHACL

Apache Jena SHACL is an implementation of the W3C Shapes Constraint Language, designed

for validating RDF graphs against a set of conditions. It supports both SHACL Core and SHACL

SPARQL Constraints, which are used to define and enforce rules on the structure of RDF data.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 34 of 47

One of the features of Jena SHACL is the SHACL Compact Syntax, which offers a more

concise way of writing constraints compared to the standard SHACL syntax.

The tool is versatile, with command-line operations for validating RDF data, parsing SHACL

files, and integrating with Apache Jena Fuseki, a SPARQL server. For instance, the command

`shacl validate` can be used to check if an RDF graph meets the specified conditions using a

SHACL shapes file. It is flexible enough to allow both the data and shapes files to be the same.

Furthermore, the system can output validation results in various formats, including a compact

text representation. For integration with Fuseki, one can configure a dataset to use SHACL

validation by defining a service operation within the server's configuration.

Apache Jena SHACL also comes with an API, found in the package `org.apache.jena.shacl`,

which provides classes for validating RDF graphs and updating them based on validation

results. The API also supports the SHACL Compact Syntax for reading and writing, though it's

worth noting that this syntax might not cover all shape possibilities and can be lossy for RDF

data. Additionally, Jena SHACL includes SPARQL-based targets, which allow for dynamic

determination of the nodes to be validated using SPARQL queries.

Finally, a ValidationListener can be used to monitor the validation process, receiving events

throughout the validation lifecycle, such as when a shape starts or finishes validating, when

focus nodes are identified, and when individual constraints yield results. This functionality

allows developers to track the validation process programmatically and respond to events as

needed.

Utilizing SHACL for Validating Intel RealSense Camera Data with ROS

Contextual Overview

The Intel RealSense camera is a sophisticated piece of technology that captures not just visual

data in the form of images and videos but also depth information, collectively known as RGBD

(Red, Green, Blue, Depth) data. This depth-sensing capability is critical for various

applications, including robotics, augmented reality, and 3D scanning. We employ the Robot

Operating System (ROS), a flexible framework for writing robot software, which serves as a

conduit for processing the data captured by the RealSense camera. Within GLACIATION, the

RealSense Camera Data will be generated by the cobots that are a part of Use Case 2 which

is the manufacturing use case.

Metadata Representation with RDF

Each RGBD dataset generated by the Intel RealSense camera through ROS is accompanied

by metadata that provides essential details about the data capture process. We represent this

metadata using the Resource Description Framework (RDF), a standard model for data

interchange on the web. RDF effectively encodes information about resources in the form of

subject-predicate-object expressions, known as triples.

Here is an example of how the metadata for an RGBD file captured from the Intel RealSense

camera is structured in RDF:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.org/properties/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 35 of 47

ex:RGBDFile001

 a ex:RGBDFile ;

 dc:format "RGBD" ;

 dc:title "RealSense RGBD capture" ;

 dc:description "Depth and visual data captured using Intel RealSense camera." ;

 ex:width "1280"^^xsd:int ;

 ex:height "720"^^xsd:int ;

 ex:depthFormat "Z16" ;

 ex:colorFormat "RGB8" ;

 ex:timestamp "2023-11-03T10:00:00Z"^^xsd:dateTime ;

 ex:frame_id "camera_frame" ;

 dc:source <http://example.org/data/rgbd-file001> .

SHACL Validation

To ensure the integrity and correctness of the metadata, we implement SHACL (Shapes

Constraint Language) for validation. SHACL allows us to define shapes or templates that

describe the structure and constraints of RDF data. When RDF data is validated against

SHACL shapes, it ensures compliance with the defined standards and requirements.

Below is a SHACL shape designed to validate the RDF metadata of the RGBD files:

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.org/properties/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:RGBDFileShape

 a sh:NodeShape ;

 sh:targetClass ex:RGBDFile ;

 sh:property [

 sh:path dc:format ;

 sh:hasValue "RGBD" ;

];

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 36 of 47

 sh:property [

 sh:path dc:title ;

 sh:datatype xsd:string ;

 sh:minLength 1 ;

];

 sh:property [

 sh:path dc:description ;

 sh:datatype xsd:string ;

 sh:minLength 1 ;

];

 sh:property [

 sh:path ex:width ;

 sh:datatype xsd:int ;

 sh:minInclusive 1 ;

];

 sh:property [

 sh:path ex:height ;

 sh:datatype xsd:int ;

 sh:minInclusive 1 ;

];

 sh:property [

 sh:path ex:depthFormat ;

 sh:hasValue "Z16" ;

];

 sh:property [

 sh:path ex:colorFormat ;

 sh:hasValue "RGB8" ;

];

 sh:property [

 sh:path ex:timestamp ;

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 37 of 47

 sh:datatype xsd:dateTime ;

];

 sh:property [

 sh:path ex:frame_id ;

 sh:datatype xsd:string ;

 sh:minLength 1 ;

];

 sh:property [

 sh:path dc:source ;

 sh:nodeKind sh:IRI ;

];

The SHACL shape specifies constraints such as the required format for the depth and colour

data, the minimum length for strings, and the requirement for certain properties to have specific

values or data types. It serves as a blueprint to validate each RDF data entry against our

expected standards, ensuring that any data ingested from the Intel RealSense camera via

ROS conforms to our system requirements and is thus reliable for downstream processing and

analysis.

3.8 Metadata Services

Metadata Services will be providing an API to interact with the Metadata of the model. Here,

we understand Metadata in a broad sense, such as “data about data”, for example information

about data creation: author, timestamp, source, external parameters (possibly including

measured parameters of environment which could be relevant regarding estimation of energy

costs) or data modification. Such metadata could be stored on each edge device and reflect

the state of a part of the knowledge graph stored there. We will work with different meta-data

types reflected in Metadata Architecture.

A database with all metadata entries will be the core of the service. Currently, we assess

possible technological solution that would suit this role in the best way. Python scripts, based

on, e.g., Flask framework, will work around the database providing easy ways to access data,

write it, and remove it when necessary. Validation scripts will be added to check the compliance

of entered metadata with standards which we are developing in close collaboration with our

partners.

Metadata Services will be fully integrated to work with distributed knowledge graph and with

other microservices.

More specifically, we are going to store such metadata (tentatively):

• Unique Entry ID

• Creation time

• Last edit time

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 38 of 47

• Last access time

• Author

• Source

• Associated energy costs/External energy data

• Work capacity of edge device

• References to scheme/ontologies relevant for the data

• Privacy and access rights information

• Environmental data (e.g., weather report)

• Data movement metadata

• Kubernetes specific metadata

We will provide tools for automatic and manual processing of entries. This would include

generating of some information automatically on creation of a new entry, such as time stamps,

as well as possibility to manually add Author and Source information. Some information will be

obtained from external sources, such Energy data and Environmental data.

The list of foreseen API functions (not exclusive, tentative, list):

• Create new entry. Will accept entry text and target database as input. Will produce a

new entry using entered data and state of the environment. It will record timestamp and

measurements of energy and environment characteristics and assign a unique entry

ID. Also, the function will check permissions of a user to write to a database.

• List entries. The function will list all the available entries on a device giving only short

description.

• Read entry. Show detailed information about an entry.

• Remove entry. Delete an entry from the database.

The functions can also be more specific, when they will address different types of metadata,

for example:

• Access to External Energy data

• Access to Environmental data (e.g., weather report)

• Policy broadly defined.

• Access to metadata for Data movement

• Access to Kubernetes-specific metadata

We should add that the search engine communicates with the Distributed Knowledge Graph

(particularly, with the local Knowledge Graph stored on a device) through Metadata Services.

The FusekiCommunicator framework is used to access the data and read it from Python, see

Figure 10 Code snippet of the Fuseki Communicator class in Python.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 39 of 47

Figure 10 Code snippet of the Fuseki Communicator class in Python.

Metadata services are under active development and are planned for subsequent releases.

3.9 IceStream Software Release Description

Software Bill of Materials

In our Novel Metadata Fabric, IceStream, we utilize the Software Package Data Exchange

(SPDX) format as a systematic approach to document the software components and their

associated metadata. This standardized method is crucial for accurately cataloguing various

aspects of software, including licenses, origins, and dependencies. Our software stack,

incorporating tools like Apache Jena Fuseki, Apache Jena SHACL, and other integral software

artifacts, is meticulously detailed in an SBOM using SPDX. This approach ensures thorough

documentation of all components within our framework, aiding in adherence to open-source

license requirements and efficient management of software bills of materials (SBOMs). Such

detailed documentation is pivotal for our project's objective to measure software energy

consumption transparently and responsibly, particularly given the complex interplay of multiple

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 40 of 47

software layers. A section of the SBOM for IceStream, exemplifying this practice, is presented

in Figure 11 SBOM snippet for IceStream software.

Figure 11 SBOM snippet for IceStream software

Software Release Information

The IceStream software aligning with D6.2 is available on the GLACIATION GitHub repository

as illustrated in Figure 12 IceStream Software Release.

Figure 12 IceStream Software Release

IceStream Deployment

As the GLACIATION platform is Kubernetes based, we need a consistent manner to deploy

the various pods and daemonsets to the cluster. To do this we currently use a bash script.

Each major component within GLACIATION has it’s own bash script and are started in

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 41 of 47

sequence. This is illustrated in Figure 13 IceStream Deployment Script Part 1 and Figure 14

IceStream Deployment Script Part 2.

Figure 13 IceStream Deployment Script Part 1

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 42 of 47

Figure 14 IceStream Deployment Script Part 2

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 43 of 47

4 Future Work

As we advance into an increasingly digital epoch, the roles of scripts and microservices in

software development are pivotal. Their evolution is a testament to the industry's need for

agility, scalability, and modularity. While the current state of script and microservices

development has brought transformative changes to applications and systems, the horizon

promises even more innovative shifts.

- Metadata Service

The conceptualization and development of a "Metadata Service" represent a pivotal aspect of

system enhancement and refinement. The Metadata Service is an integral component

designed to manage, organize, and provide access to metadata within a software ecosystem.

Metadata, which encompasses descriptive information about data, processes, or resources,

plays a critical role in contextualizing and optimizing the utilization of these elements within a

system.

The development of a Metadata Service involves a multifaceted approach, addressing various

aspects to ensure its effectiveness and seamless integration into the overall software

architecture.

In essence, the conceptualization and development of a Metadata Service for future work

embody a commitment to advancing data management capabilities within a software

ecosystem. It serves as a linchpin for improved organization, accessibility, and utilization of

metadata, thereby contributing to the overall efficiency and adaptability of the system. Through

careful consideration of these diverse aspects, the Metadata Service becomes a catalyst for

enhanced data governance and optimization in the evolving landscape of software

development.

- Data Processing and Monitoring Service

Development and enhancement of a "Data Processing and Monitoring Service" represent a

strategic initiative to elevate the capabilities of a software ecosystem. This service is designed

to manage, process, and monitor data streams, providing critical insights and real-time

analytics for informed decision-making.

Development of a Data Processing and Monitoring Service for future work is a strategic

investment in elevating data-driven decision-making within a software ecosystem. By focusing

on real-time processing, scalability, advanced analytics, security, and adaptability, this service

becomes a cornerstone for organizations seeking to harness the full potential of their data

assets in a dynamic and ever-evolving digital landscape.

- Replica Service

Conceptualization and development of a "Replica Service" represent a strategic endeavour to

enhance data resilience, availability, and distribution. The Replica Service is designed to

manage and replicate data across distributed nodes, ensuring redundancy, fault tolerance, and

efficient data access.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 44 of 47

- Prediction service

The "Prediction Service" stands as a forward-looking initiative aimed at enhancing the

platform's capabilities in forecasting, anticipating, and proactively responding to dynamic

changes within the computing environment. The Prediction Service is designed to harness

advanced analytics and machine learning techniques to provide valuable insights, enabling

informed decision-making and optimized resource allocation.

Prediction Service is a strategic initiative to elevate the platform's intelligence and

responsiveness. By leveraging advanced analytics and machine learning, this service enables

organizations to not only anticipate future states but also proactively shape the computing

environment for optimal efficiency and performance.

- Data Storage Service

Represents an innovative initiative aimed at advancing data storage capabilities with the

incorporation of SHACL (Shapes Constraint Language). The primary focus is on enhancing

data validation, schema definition, and overall data quality within the storage service.

Shows a strategic move towards elevating data quality, schema flexibility, and overall storage

capabilities. By harnessing the expressive power of SHACL, this service ensures that data

stored within the Glaciation ecosystem is not only accurate and consistent but also adaptable

to evolving data requirements.

- Trade-off Service

The "Trade-off Service" stands as an innovative initiative aimed at providing a systematic

approach for evaluating and navigating trade-offs among various parameters within the

system. This service is designed to empower users with the ability to make informed decisions

by considering the interdependencies and consequences of different choices.

Strategic initiative to empower users with a systematic and informed approach to decision

making. By considering multi-dimensional trade-offs, providing optimization capabilities, and

fostering continuous improvement, this service becomes a cornerstone in achieving a

balanced and adaptable computing environment within the GLACIATION ecosystem.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 45 of 47

5 Conclusion

The objective of the intermediate deliverable is to present the progress of the schema and

microservices development in Task 6.2 of Work Package 6 within the initial 14 months of the

GLACIATION project. We have explored and investigated a set of ontologies for the schema

regarding the three GLACIATION use cases and implemented several microservices.

In Chapter 2, we introduced the concept of a Distributed Knowledge Graph, its core building

blocks which include various data models and representation techniques for organizing

knowledge, and the key technologies for implementing it.

Chapter 3 first provided an overview of schema and a set of ontologies regarding three use

cases, and then presented implemented scripts and microservices. These include the

prediction microservice, data storage service, and metadata service developed to date. These

microservices enable several functionalities, such as forecasting data popularity with different

algorithms, SHACL validation within the data storage workflow, and metadata operations in

the platform.

Finally, Chapter 4 discussed a list of future tasks that require improvement and development,

building on top of the current progress of the schema, scripts and microservices. The ongoing

development of schema and microservices, along with other planned microservices, will be

integrated into the GLACIATION platform to fulfil the requirements for operating the novel

metadata fabric by the end of the project.

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 46 of 47

References

[Aba16] M. Abadi. "TensorFlow: learning functions at scale." In Proceedings of the 21st ACM

SIGPLAN international conference on functional programming, pp. 1-1. 2016.

[Jen15] Apache Jena. A free and open source java framework for building semantic web and

linked data applications, 2015. jena.apache.org.

[RVP+22] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown. "Bayesian uncertainty

modelling for cloud workload prediction." In 2022 IEEE 15th International Conference on

Cloud Computing (CLOUD), pp. 19-29. IEEE, 2022.

[RVP+23a] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown. "Uncertainty-Aware

Workload Prediction in Cloud Computing." arXiv preprint arXiv:2303.13525, 2023.

[Smi17] T. G. Smith, et al. pmdarima: ARIMA estimators for Python, 2017-,

http://www.alkaline-ml.com/pmdarima [Online; accessed 2023-10-24].

[RAT13] H. Rijgersberg, M. V. Assem, and J. Top. "Ontology of units of measure and related

concepts." Semantic Web 4, no. 1: 3-13, 2013.

[LSM+13] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, D.

Garijo, S. Soiland-Reyes, S. Zednik, and J. Zhao. "Prov-o: The prov ontology." W3C

recommendation 30, 2013.

[RVP+23b] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown. "Clustering based

numerosity reduction for cloud workload prediction." AI4TS at IJCAI, 2023

[BCK+15] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. "Weight uncertainty in

neural network." In International conference on machine learning, pp. 1613-1622. PMLR,

2015.

[KHH20] A. Kristiadi, M. Hein, and P. Hennig. "Being bayesian, even just a bit, fixes

overconfidence in relu networks." In International conference on machine learning, pp. 5436-

5446. PMLR, 2020.

[LAL+21] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister. "Temporal fusion transformers for

interpretable multi-horizon time series forecasting." International Journal of Forecasting 37,

no. 4: 1748-1764, 2021.

[KB14] D. P. Kingma, and J. Ba. "Adam: A method for stochastic optimization." arXiv preprint

arXiv:1412.6980, 2014.

[SFG+20] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. "DeepAR: Probabilistic

forecasting with autoregressive recurrent networks." International Journal of Forecasting 36,

no. 3: 1181-1191, 2020.

[JA18] R. J. Hyndman, and G. Athanasopoulos. Forecasting: principles and practice. OTexts,

2018.

[FA14] O. Fabius, and J. R. Van Amersfoort. "Variational recurrent auto-encoders." arXiv

preprint arXiv:1412.6581, 2014.

http://www.alkaline-ml.com/pmdarima

Copyright © 2023 GLACIATION | DELIVERABLE 6.2 – Script and Microservices Software - Intermediate

 Page 47 of 47

[Koh82] T. Kohonen. "Self-organized formation of topologically correct feature maps."

Biological cybernetics 43, no. 1: 59-69, 1982.

[WEG87] S. Wold, K. Esbensen, and P. Geladi. "Principal component analysis."

Chemometrics and intelligent laboratory systems 2, no. 1-3: 37-52, 1987.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. "Deep learning." Nature 521, no. 7553: 436-

444, 2015.

[HB21] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian

Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas

Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine Zimmermann. 2021. Knowledge

Graphs. ACM Comput. Surv. 54, 4, Article 71 (May 2022), 37 pages.

https://doi.org/10.1145/3447772

[CO23] COST (European Cooperation in Science and Technology) is a funding agency for

research and innovation networks. https://cost-dkg.eu/

[BEP+08] Bollacker, Kurt, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

"Freebase: a collaboratively created graph database for structuring human knowledge." In

Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp.

1247-1250. 2008.

[LDY+23] Lu, Yuhuan, Bangchao Deng, Weijian Yu, and Dingqi Yang. "HELIOS: Hyper-

Relational Schema Modeling from Knowledge Graphs." In Proceedings of the 31st ACM

International Conference on Multimedia, pp. 4053-4064. 2023.

[ZM20] Zouaq, Amal, and Felix Martel. "What is the schema of your knowledge graph?

leveraging knowledge graph embeddings and clustering for expressive taxonomy learning." In

Proceedings of the international workshop on semantic big data, pp. 1-6. 2020.

[BCM17] Buoncompagni, Luca, Alessio Capitanelli, and Fulvio Mastrogiovanni. "A ROS multi-

ontology references services: OWL reasoners and application prototyping issues." arXiv

preprint arXiv:1706.10151 (2017).

[LD20] Y. Lai, and D. A. Dzombak. "Use of the autoregressive integrated moving average

(ARIMA) model to forecast near-term regional temperature and precipitation." Weather and

Forecasting 35, no. 3: 959-976, 2020.

[AAA14] A. A. Ariyo, A. O. Adewumi, and C. K. Ayo. "Stock price prediction using the ARIMA

model." In 2014 UKSim-AMSS 16th international conference on computer modelling and

simulation, pp. 106-112. IEEE, 2014.

[CMR14] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. "Workload prediction using

ARIMA model and its impact on cloud applications’ QoS." IEEE transactions on cloud

computing 3, no. 4: 449-458

https://doi.org/10.1145/3447772
https://cost-dkg.eu/

